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Abstract—The primary challenge faced by Automated Pro-
gram Repair (APR) techniques in fixing buggy programs is the
search space problem. To generate a patch, APR techniques
must address three critical decisions: where to fix (location),
how to fix (operation), and what to fix with (ingredient). In
this study, we propose EnCus, a novel approach that customizes
the search space of ingredients and mutation operators during
patch generation. EnCus acts as an APR wingman, using an
ensemble-based strategy to customize the search space. The
search space is customized by extracting edit operations that
are used to fix similar bug-introducing changes from existing
patches. EnCus applies an ensemble of edit operations extracted
from three open source project pools and three Abstract Syntax
Tree (AST)-level code differencing tools. This ensemble provides
complementary perspectives on the buggy context. To evaluate
this approach, we integrate EnCus to an existing context-based
APR tool, ConFix. Using EnCus, the extensive search space of
ConFix is reduced to ten recommended patches. EnCus was
evaluated on single-line Defects4J bugs, successfully generating
20 correct patches which performs comparably to state-of-the-art
context-based APR techniques.

Index Terms—automatic program repair, search space, code
differencing

I. INTRODUCTION

Automated Program Repair (APR), as noted by Long and
Rinard [1], faces the challenge of effectively navigating the
search space. To fix buggy source code, APR techniques must
make three critical decisions: where to fix (location), how to
fix (operation), and what to fix with (ingredient) [2]. APR
techniques can generate a patch for a repair only when they
make the right decisions for the three areas. To investigate
and determine the final solution (patch) of a buggy code, APR
techniques need to consider possible combinations of the three
decisions, namely, the search space. Consequently, various
strategies on these factors can determine a unique search space
for each APR technique.

Many APR techniques employ heuristics-based approaches
that mainly focus on creating a large search space to generate
a fixing patch and then navigating it using search heuristics to
find the patch efficiently [3]. To create the search space, early
APR techniques [4]–[6] used a handful of different types of
edits, which have not been enough to contain correct patches
for bugs. To expand the search space, later approaches [7]–[13]
leveraged various information collected from history, such as
human-written bug fixes.
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However, the trade-off between a large search space with
more patches and the difficulty of finding the correct patches
still exists. As the search space expands, navigation becomes
increasingly complex. Without an effective navigation strategy,
expanding the search space does not yield meaningful results.

To address the challenges of heuristic-based APR tech-
niques, we propose EnCus, a novel Ensemble-based search
space Customization for APR techniques. A previous ap-
proach, SPI [14], demonstrated the potential of reducing the
search space for context-based APR tools. Building on this
foundation, our approach takes advantage of the reduced
search space to implement an ensemble-based method that cus-
tomizes the search space by combining diverse perspectives.
Specifically, EnCus combines an ensemble of three open-
source project pools and three AST-level code differencing
tools to provide complementary views of the bug context. This
synergy between the customized project pools and the AST-
level differencing tools enhances EnCus’s ability to navigate
the search space efficiently and identify correct patches.

Due to the challenges associated with search spaces, re-
cent studies in APR have increasingly focused on deep
learning-based approaches, which have demonstrated supe-
rior performance compared to heuristic-based methods [15].
When problems related to search spaces are effectively ad-
dressed, heuristic-based approaches can offer significant po-
tential. Recent deep learning-based APR approaches have
achieved improved results when integrated with concepts de-
rived from heuristic-based methods [15]–[17]. In this context,
EnCus provides valuable insights.

We evaluated EnCus on 125 single-location code modi-
fications from the Defects4J [18] dataset. Building on SPI,
EnCus further customizes the reduced search space using
its ensemble approach, ultimately fixing 20 bugs in total,
including 8 bugs that ConFix could not address. We share
the replication package.1

The contributions of our study are as follows.

• Search Space Customization: We introduce EnCus, a
novel approach designed to customize the search space
for APR tools by using an ensemble-based method that
integrates three project pools and three AST-level code
differencing tools.

1https://github.com/HandongSF/EnCus
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Fig. 1. Overview of EnCus.

• Evaluation and Performance Improvement: We
demonstrate that integrating EnCus into an existing APR
tool improves its performance.

II. BACKGROUND

The main concern of heuristics-based automated program
repair is the size of the search space. Jang et al. proposed
SPI [14], which reduces the search space during the construc-
tion of a mutation operation pool. SPI collects Bug-Introducing
Changes (BIC) and their corresponding Bug-Fixing Commits
(BFC) from open-source projects. SPI identifies BICs with
similar contexts to the target bug based on contextual similarity
based on a tree-based code differencing tool. Then, it rec-
ommends BFCs corresponding to the identified BIC, creating
a customized search space for the APR tool. SPI used only
0.15% bug-fixing commits compared to ConFix and showed
a comparable result [9], [14].

The effectiveness of SPI relies heavily on the quality of data
used for pool construction. If the collected data lacks diversity
or relevance to the target projects, the resulting pool may fail
to generalize to new bug contexts.

To enhance effectiveness, the pool should prioritize actively
maintained projects that reflect current bug-fixing practices,
exclude irrelevant changes, and focus on projects with features
similar to the target, ensuring the patches are relevant and
applicable [9], [13], [19].

The process of identifying similar bug contexts is strongly
influenced by the choice of the code differencing tool. Iden-
tifying similar bug contexts plays a pivotal role in SPI as
it establishes the foundation for recommending appropriate
bug-fixing commits. However, code differencing tools often
produce varying results due to their distinct algorithms [20],
[21]. GumTree [22], the most widely used tool in this domain,
focuses on generating fine-grained edit scripts that closely
reflect human edits. Its latest iteration, GumTree4.0 [23]
improves on scalability and efficiency for larger codebases.
Additionally, LAS [24] introduces a location-aware approach
to improve accuracy by focusing on multiple-node matching.

III. APPROACH

A. Overview

As shown in Fig. 1, EnCus constructs ensembles of project
pools and AST-level code differencing tools to guide the repair
process. It begins by using three open-source project pools
according to project nature, data relevance, and developer

behavior to identify contexts similar to the buggy code. The
contexts of these changes are computed using an ensemble
of three differencing tools. Constructing the ensembles is a
one-time process, and they are utilized to define a customized
search space that consists of just 90 similar patches, 10 patches
for each pair of a pool and a change context, to fix the target
bug. Once similar patches are identified, they are supplied to
an APR tool to generate the patch for the bug.

B. Project Pool Customization

EnCus mines open-source projects to create a customized
pool of bug-fixing contexts. This pool is populated with
contexts of Bug-Introducing Changes (BIC) extracted from the
historical changes in open-source projects. EnCus employs an
ensemble approach, constructing three distinct pools based on
the following characteristics:

• Project nature: Projects with similar functionalities to the
target project were included, based on the assumption that
similar functionality leads to similar bug-fixing patterns.

• Data relevance: A refined pool was created by filtering for
changes directly impacting buggy code while excluding
unrelated edits, such as format or documentation changes.

• Developer behavior: Actively maintained and frequently
updated projects were selected, ensuring the pool repre-
sents up-to-date and practical bug-fixing practices.

C. Change Context Customization

After constructing the project pools, EnCus identifies past
bugs with contexts similar to the target bug. EnCus uses an
ensemble of three AST-level code differencing tools to identify
the contexts. This ensemble approach focuses on describing
the same change with different edit operations and contexts,
providing a variety of potential operations to fix the bug.

Relying on a single differencing tool could lead to missing
applicable changes due to minor differences between the
buggy context and the previously collected operations, even
if the necessary ingredients are present. By leveraging multi-
ple tools, EnCus mitigates this issue, ensuring that relevant
contexts and edit operations are not overlooked.

D. Patch Generation

Once the top similar Bug-Introducing Changes (BIC) are
identified based on their similarity of AST-level code differ-
ences, the paired Bug-Fixing Commits (BFC) are provided
to ConFix. These selected BFCs represent a curated set of
bug-fixing edits. By leveraging this customized search space
(similar patch pool) of bug fixing edits, the search space for
potential patch candidates is narrowed, enabling the repair pro-
cess to focus on promising solutions rather than exhaustively
exploring the entire space of possible edits.

IV. EXPERIMENTAL SETUP

We address the following research questions:
• RQ1: How effective is EnCus in improving the perfor-

mance of an APR tool?
• RQ2: What is the impact of the ensemble approaches on

the performance of EnCus?
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A. Evaluation

To evaluate EnCus, we used Defects4J [18] version 2.0.1
as the benchmark dataset. Experiments were conducted on
projects Chart, Closure, Lang, Math, and Time, which previous
APR tools [8], [9], [12], [13] attempted to repair. Deprecated
bugs in the older versions were not counted toward the results.

The evaluation was restricted to single-location code mod-
ifications to align with the capabilities of ConFix in these
experiments. Furthermore, EnCus generates candidate bug-
fixing patches at the modification level of a single source
code file. Consequently, bugs requiring patches across multiple
files or involving multiple locations within a single file were
excluded, resulting in a total of 125 bugs for evaluation.

To evaluate the impact of EnCus on the performance of
APR tools, the actual bug location information was provided.

B. Open-Source Project Pools

The three project pools consist of the following projects:
• Project nature: We used an online resource, Awesome

Java [25], which curates libraries with similar function-
alities. For each project in Defects4J [18], we selected
the top two related projects: Closure was matched with
ANTLR [26] and JFlex [27], Math with MALLET [28]
and Smile [29], Chart with XChart [30] and BioJava [31],
Lang with Guava [32] and commons-Text [33], and Time
with ical4j [34] and Time4J [35].

• Data relevance: We used GrowingBugRepository [19], a
repository of 250 projects, that contains patches with only
changes relevant to the bug. To match our target, only
single-line bugs were extracted.

• Developer behavior: Using the bug-tracking software
Jira [36], we selected five Apache projects known for
their frequent bug-fixing activity: Beam [37], Cassan-
dra [38], Hadoop [39], jUDDI [40], and Spark [41].

C. AST-Level Code Differencing Tools

We evaluated EnCus using three AST-level code differenc-
ing tools. GumTree 3.0 [22], GumTree 4.0 [23], and LAS [24].
These tools have distinct approaches to extracting edit scripts,
resulting in different change contexts.

D. APR Tools

For the APR tool integrated with EnCus, we selected
ConFix [9]. To evaluate the potential of the approach, ConFix
was executed using a single patching strategy: FLFreq &
Hash Match. Since EnCus significantly reduces the search
space, we set a time limit of 30 minutes per bug for patch
generation. If no patch was generated within this time frame,
it was considered a failure. The accuracy of the patches was
assessed by manually comparing the generated patches with
the ground-truth solutions.

We evaluated the performance of EnCus against four other
context-based APR tools to provide a broader comparison:
ssFix [13], CapGen [12], SimFix [8], and ConFix [9]. These
tools were selected for their heuristic-based approaches that

leverage bug context, external patch context, or both, mak-
ing them relevant to our customized search-space reduction
approach. The results were obtained from each tool’s public
artifacts [42]–[45].

V. RESULTS

A. RQ1: How effective is EnCus in improving the perfor-
mance of an APR tool?

To evaluate the impact of integrating EnCus with an APR
tool, we compared the performance of EnCus + ConFix, SPI
+ ConFix, standalone ConFix [9], ssFix [13], CapGen [12],
and SimFix [8] on single-line bugs in Defects4J [18]. Table I
summarizes the results.

TABLE I
PERFORMANCE COMPARISON OF ENCUS + CONFIX VS. SPI + CONFIX VS.

CONTEXT-BASED APR TOOLS.

Projects EnCus SPI ConFix ssFix CapGen SimFix
+ ConFix + ConFix

Chart 3 3 4 2 4 2
Closure 6 3 4 1 N/A 4
Lang 3 2 5 5 4 3
Math 8 4 6 5 11 7
Time 0 0 1 0 0 0
Sum 20 12 20 13 19 16

The results demonstrate that EnCus + ConFix outperforms
SPI + ConFix and performs equivalently compared to ConFix
in terms of the total number of bugs repaired, successfully
addressing 20 bugs compared to 12 by SPI + ConFix and
20 by standalone ConFix. This highlights the improvement in
the effectiveness EnCus’s ensemble-based approach provides,
by succeeding in generating a comparable number of correct
patches. In addition, EnCus surpasses several baseline tools,
including ssFix (13), CapGen (19), and SimFix (16).
EnCus introduced eight new bug fixes that ConFix was un-

able to generate: Closure-10, 70, 86, 133, Lang-59, Math-57,
58, 59. EnCus + ConFix compared to SPI + ConFix, which
repaired 12 bugs, generated nine new bug fixes: Closure-70,
73, 133, Lang-57, Math-33, 34, 57, 58, and Chart-24, demon-
strating the effectiveness of its ensemble-based customization
of the search space.

For example, Closure-70 was repaired using combinations
of either GumTree 4.0 or LAS. In contrast, SPI used only
GumTree 3.0 to identify contexts and failed to generate a cor-
rect patch. Math-57 was repaired using the data relevance Pool.
The effect of focusing on the core edits allowed EnCus to
customize a search space for ConFix to generate a correct fix
that ConFix’s search space originally overlooked.

However, the number of correct patches generated by
EnCus + ConFix did not exceed the total number of fixes
made by ConFix. Several reasons contributed to this limitation.
For cases Chart-1, Closure-38, 92, Lang-24, and Time-19,
EnCus + ConFix generated plausible patches earlier than
generating correct patches, which preemptively terminated
the patch generation process. In the case of Lang-26, 51,
and Math-75, EnCus had difficulties collecting Bug Intro-
ducing Changes (BIC) using the Defects4j [18] framework.
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EnCus requires information from before the bug was intro-
duced; however, for Lang-26 and Math-75, this information
could not be retrieved during the code revision checkout
process. Lang-51 faced inconsistencies between Defects4J’s
metadata and the actual repository data, leading to mismatches
during the checkout process.

Also, EnCus + ConFix failed to repair a bug SPI + ConFix
successfully fixed, Chart-1. The human patch for Chart-1
involves a simple change from != to == in a conditional
statement. While EnCus successfully identifies the change
context to be a boolean operator modification, it fails to
identify the concrete change from != to ==. This is because
EnCus uses AST-level code differencing, while SPI applies
another stage of text-based differencing to identify concrete
syntax change contexts.

B. RQ2: What is the impact of the ensemble approaches on
the performance of EnCus?

TABLE II
NUMBER OF CORRECT FIXES GENERATED BY THE ENSEMBLE APPROACH

GumTree 3.0 GumTree 4.0 LAS

Project Nature 8 12 12
Data Relevance 15 14 15
Developer Behavior 12 14 (1) 10 (1)

Table II shows the number of correct fixes generated with
different customization strategies. The parenthesized numbers
represent a unique fix that only a specific combination of
the customization strategies generated. The developer behavior
pool contributed the most with two unique patches.

The pool collected based on data relevance shows minimal
influence from code differencing tools. This is because code
differencing tools tend to exhibit varying perspectives, espe-
cially for long modifications. The pool, curated with a focus on
data relevance, excludes unrelated modifications and primarily
consists of short edits. In practice, all bug fixes in this pool
were identical, where only one case (Closure-73) failed to be
fixed using GumTree 4.0 [23].

In contrast, the pool collected based on developer behavior
exhibits strong synergy with GumTree 4.0. GumTree 4.0 is
designed to be scalable for large codebases, and the developer
behavior pool, collected to focus on active bug fixing, includes
substantial modifications within large code repositories com-
pared to the others.

Based on the Pool Customization Strategy and Code Dif-
ferencing Tool Customization Strategy, the pool based on de-
veloper behavior produced two fixes that the other pool could
not generate, respectively. Also, each code differencing tool
produced a fix that the different tools could not generate. The
ensemble-based approach in EnCus demonstrates advantages
by combining pools and differencing tools, broadening the
search space while maintaining precision in patch generation.

VI. DISCUSSION

EnCus demonstrates scalability by leveraging its customiz-
able search space approach. Currently, it operates with three

pools and three differencing tools. However, its design allows
for the addition of more pools and tools. This flexibility
enables EnCus to scale as new data sources or advanced
differencing tools become available. Once the ensemble is
formed, the similar patch pool is significantly reduced. By
narrowing the search space, EnCus can reduce computational
overhead, allowing for multiple iterations and better results.

The eight additional bug fixes generated by EnCus,
compared to ConFix [9], demonstrate the effectiveness of
customized search spaces. With more advanced methods
for mining change pools and extracting AST-level changes,
EnCus has the potential to achieve better performances.
EnCus’s performance was evaluated using heuristic-based

APR tools, focusing on generating an efficient pool of mu-
tation operations in the preliminary stages. Recent trends
in APR techniques predominantly use deep learning, which
has demonstrated superior performance compared to heuristic-
based methods [46]. By leveraging EnCus’s ability to analyze
and compare code changes, it can enhance template-based
and neural repair methods by refining template selection and
assisting in generating higher-quality patches [15]–[17].

Defects4J [18] is the benchmark used to evaluate the per-
formance of EnCus. To reproduce each bug, Defects4J injects
the bug into a project where the bug has already been fixed.
According to EnCus’s approach, the BIC is the modification
in the code that transitions from the fixed code to the buggy
code. To evaluate EnCus’s performance, Defects4J needed to
be used as the benchmark.
EnCus has the potential of over-fitting in the constructed

pools of bug-fixing contexts. Since the pools were curated
based on specific criteria, there was a risk that the diversity
of the included bug-fixing patterns might not be sufficiently
generalized to new contexts. Additionally, the use of an ensem-
ble of AST-level code differencing tools can overemphasize
certain structural similarities, potentially ignoring semantic
information.

VII. CONCLUSION

This study introduces EnCus, a novel approach to reduce
the search space in APR. By customizing the search space
of patch ingredients and mutation operators, EnCus leverages
an ensemble of edit operations extracted from diverse open-
source project pools and AST-level code differencing tools.
EnCus not only narrows the extensive search space but
also enhances the efficiency and accuracy of heuristic-based
APR tool while reducing the computational burden. We are
expecting EnCus can serve as a foundational tool not only
for improving heuristic-based methods but also for enhancing
learning-based APR approaches.
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