
Pre-trained Models for Bytecode Instructions
Donggyu Kim∗, Taemin Kim∗, Jiho Shin†, Song Wang†, Heeyoul Choi∗, and Jaechang Nam∗‡

∗Handong Global University, Pohang, South Korea
†York University, Toronto, Canada

{kdg,tmkim}@handong.edu, {jihoshin, wangsong}@yorku.ca, {hchoi, jcnam}@handong.edu

Abstract—Recent advancements in pre-trained models have
rapidly expanded their applicability to various software en-
gineering challenges. Despite this progress, current research
predominantly focuses on source code and natural language
processing, largely overlooking Java bytecode. Java bytecode,
with its well-defined structure and high availability, presents a
promising yet under-explored domain for leveraging pre-trained
models. Its inherent properties, such as platform independence
and optimized performance, make Java bytecode an ideal can-
didate for developing robust and efficient software engineering
solutions. Addressing this gap could unlock new opportunities
for enhancing automated program analysis, bug detection, and
code generation tasks.

In this study, we propose byteT5 and byteBERT, which
are pre-trained models with hexadecimal bytecode. To build our
models, we developed a bytecode tokenizer, ByteTok, to generate
hexadecimal input representations for our pre-trained models.
We conduct an empirical study comparing our models and GPT-
4o. The results indicate that byteT5 and byteBERT outperform
GPT-4o in the span masking task. We anticipate these findings
will pave the way for novel approaches to addressing various
software engineering challenges, particularly live patching.

Index Terms—Bytecode, T5, BERT, pre-trained model

I. INTRODUCTION

Recently, pre-trained models for disassembled bytecode
instructions were introduced to address software engineering
problems. Choi and Nam [1] identified the inherent natural-
ness of disassembled bytecode instructions, emphasizing their
potential to develop effective deep learning models. Some
studies have explored leveraging disassembled bytecode in
pre-trained models to address challenges such as vulnerability
detection, malware analysis, and binary similarity assessment
at the bytecode level [2], [3].

However, pre-trained models based on disassembled byte-
code in the existing studies have limitations, highlighting
the need for bytecode pre-trained models in hexadecimal
format. After editing the disassembled bytecode, it is difficult
to assemble the bytecode again in binary or hexadecimal
format. This limitation obstructs the development of software
engineering tools that require modifications to binary class
files. To tackle this problem, hexadecimal bytecode must be
directly used for pre-trained models. While, to our knowledge,
no study exploits pre-trained models based on the hexadecimal
representation of the bytecode.

The goal of this study is to propose byteT5 and
byteBERT, bytecode pre-trained models based on T5 and
BERT architectures [4], [5]. To our knowledge, this is the

‡ Corresponding author

first study to build a bytecode pre-trained model in hex-
adecimal representation. In our empirical study, we compared
byteT5 and byteBERT with GPT-4o. The results indicate
potential for the span masking task, a variant of masked
language modeling that employs continuous masking rather
than single-token masking. While GPT-4o achieves 29.43%
accuracy, byteT5 and byteBERT achieve 53.82% and
64.58% accuracy respectively in the span masking task. These
results can lead to the next steps to solve software engineering
problems by using the pre-trained models based on hexadeci-
mal bytecode representations.

The contributions of this study are as follows:
• We proposed byteT5 and byteBERT, first bytecode

pre-trained models in hexadecimal format. These will be
an important foundation for further studies addressing
various software engineering problems.

• We conducted an empirical study to compare byteT5,
byteBERT, and GPT-4o which is a state-of-the-art large
language model. The results show that our models out-
perform GPT-4o in the span masking task.

• We developed benchmark datasets to facilitate further
studies and share a tool for bytecode tokenizing to
generate a training dataset for a pre-trained model.1

II. BACKGROUND

Bytecode is the output of the compilation process for
various programming languages such as Java, Scala, and
Kotlin. It follows a well-defined and strict structure, com-
prising multiple sections, including the constant pool, fields,
methods, attributes, and more. Each section contains dif-
ferent types and associated fields. For instance, the con-
stant pool has 30 distinct types, each with unique fields
and byte lengths. The Constant_Methodref type, for
example, includes fields such as tag, class_index, and
name_and_type_index, occupying a total of 5 bytes.
On the other hand, the Constant_Long type consists of
fields like tag, high_bytes, and low_bytes, taking up
9 bytes—nearly double the size of Constant_Methodref.
The variability in byte lengths across these types makes direct
analysis of bytecode challenging when addressing software
engineering problems.

Several studies focus on solving software engineering prob-
lems using bytecode. DexBERT is an Android bytecode pre-
diction model based on BERT [2], [5]. It uses a disassembled

1https://github.com/ISEL-HGU/bytecode-pre-trained.git



Fig. 1. Study Overview

bytecode format to address software engineering problems
such as malicious code localization, defect prediction, and
component-type classification tasks. It outperforms MKLDroid
and smali2vec. ByteBack is a tool that verifies functional cor-
rectness properties using Java bytecode [3]. ByteBack employs
a high-level Grimp intermediate representation rather than raw
bytecode. DexBERT and ByteBack do not use the raw (binary
or hexadecimal) bytecode format, and have limitations in
addressing automated program repair (APR) problems because
disassembled and intermediate representations are difficult to
assemble back into raw bytecode. PraPR is a mutation-based
APR tool using Java bytecode [6]. It leverages the ASM library
to fix software bugs using a hexadecimal bytecode format, al-
lowing direct modification without requiring recompilation [7].
However, since PraPR is mutation-based, human developers
need to define mutation rules before execution. A significant
limitation is that pre-defined mutation rules cannot cover all
possible bug cases.

This study explores the feasibility of building bytecode pre-
trained models using a hexadecimal representation. If such
models can be built, they can enable the development of
software engineering tools that address the limitations of
existing bytecode-based approaches. For example, pre-trained
models using a hexadecimal representation can be applied to
both detection and repair tasks for software defects that cannot
be effectively handled by a single existing approach, such as
DexBERT, ByteBack, or PraPR.

III. APPROACH

This section outlines the process of building our pre-
trained models. We began by mining JAR files and perform-
ing preprocessing. Subsequently, we developed byteT5 and
byteBERT, the first pre-trained bytecode models designed to
operate on hexadecimal representations.

A. Data Collection

We collected JAR files from the Maven repository, retaining
only the latest version for each project to eliminate dupli-
cates. In this study, we focus on class files written in Java.
Subsequently, we extracted the class files from the remaining
170,952 Java JAR files, resulting in a dataset of 2.5 million
class files. Among them, we extracted constant pool and
method instructions from each class file. Finally, we randomly
selected 60,000 files including only constant pool and method
instructions.

B. Data Preprocessing

1) Extracting constant pool and methods: Bytecode has a
constant pool and method fields in its structure. Instructions
from methods fields use a constant pool index to refer to
constant values. We only use constant pool tag information
and methods in this study, because instructions are only using
constant pool index without knowing its actual value. For
example, ldc instruction uses 2 bytes to indicate its type
and constant pool index. By using constant pool index, ldc
instruction can push an item from the run-time constant pool
even if it does not know about the actual constant value.

2) Tokenization: Due to the varying lengths of bytecode
constant pools, existing tokenization methods used in large
language models for natural language and source code are
impractical for bytecode. For example, Byte Pair Encoding
(BPE) is commonly used to tokenize natural language by
handling out-of-vocabulary words [8]. It segments words into
subwords based on frequency. However, applying frequency-
based tokenization would result in bytecode tokens that do not
preserve the semantic information of the bytecode instructions.

For this reason, we develop ByteTok, a bytecode tok-
enizer, which divides bytecode into tokens following the JVM
specification. By using ByteTok, we can tokenize constant
pools and methods without losing the bytecode’s semantics.

3) Model Setup: As in Fig. 1, we select 40,000 tokenized
files as the training dataset, 8,000 files as the validation
dataset, and 12,000 files as the testing dataset. We build our
byteT5 and byteBERT approaches with PyTorch library [9]
and follow T5 [4] and BERT [5] architectures. Our models do
not use pre-trained parameters, so we implement our model
from scratch to facilitate converting the model’s settings.

In training configuration, we use the cross-entropy loss
function to update parameters and also use AdamW optimizer
[10]. In this study, we use one A5000 GPU which has
limited performance, so we set batch size as 8 and total
epoch as 30. To cover small batch sizes, we use the gradient
accumulation step of 4 to increase batch performance. In the
model configuration, we define the number of heads as 8,
maximum token length as 512, dimension size as 768, and
vocabulary size as 51,107. Additionally, we define the total
number of layers as 12, so byteT5 has 6 layers of encoder
and 6 layers of decoder, and byteBERT has 12 layers of
encoder. Each model was trained for one day.

IV. EXPERIMENTAL SETUP

A. Research Questions

To examine the performance of the pre-trained models for
bytecode, we address the following research questions.

• RQ1: Is it feasible to develop a pre-trained model specif-
ically for bytecode analysis?

• RQ2: Which of byteT5, byteBERT, and GPT-4o
achieves higher accuracy in bytecode span masking task?

We implement byteT5 and byteBERT with tokenized
bytecode, and then compare the performance of span masking
with GPT-4o.



Prompt:
You are an AI trained to analyze and complete bytecode representations of Java programs. Your
task is to identify and fill in the missing information in the bytecode based on the given input.

Below is a tokenized version of the Java bytecode. Some parts of the bytecode, specifically
within the constant pool and method sections, have been intentionally left blank (indicated by
"<mask>"). Analyze the provided bytecode, infer the missing values, and fill in the masks
accurately.

Input (Example of Tokenized Bytecode with Masks):
{<bos> 0A 08 0A 0A <mask> <mask> 0A 07 0A 08 <mask> 0A 08 0A <mask>
<mask> 08 0A 0A <mask> <mask> <mask> 08 0A 0A 0A 08 0A ...}

Expected Output (Completed Tokenized Bytecode):
• Only the completed bytecode. No additional text, comments, or formatting is allowed.
• Output only the modified bytecode, without additional commentary or formatting.

Fig. 2. Prompt Template for Bytecode Completion Task.

Fig. 3. Training / Validation Loss of byteT5 over 30 Epochs

Fig. 4. Training / Validation Loss of byteBERT over 30 Epochs

The GPT-4o was chosen for this experiment as it is one
of the most advanced large language models (LLMs) and is
based on a pre-trained architecture. In this study, we used
zero-shot learning, so we provided a template as input. As
shown in Fig. 2, we divide the content into three sections.
First, we outline the purpose of the conversation, then we
give tokenized bytecode in hexadecimal representation, which
contains constant pool and method instructions, to GPT-4o.
Finally, it returns the generated bytecode.

V. RESULT

A. RQ1: Is it feasible to develop a pre-trained model specifi-
cally for bytecode analysis?

To address this research question, we assess whether
byteT5 and byteBERT can learn the abstracted structure of

TABLE I
COMPARISION OF BYTET5, BYTEBERT, AND GPT-4O

Model # of corrects Accuracy

GPT-4o 142,866 0.2943
byteT5 261,198 0.5382
byteBERT 313,458 0.6458

bytecode. We evaluate this by examining the training and vali-
dation loss curves because there is no benchmark for bytecode.
As shown in Fig. 3, the average loss of byteT5 decreases
with each passing epoch in both the training and validation
phases. However, Fig. 4 shows that the validation loss of
byteBERT increases after 12 epochs. So, in this study, we
used the parameters of the 12th epoch to stop earlier.

Although there is an overfitting problem from byteBERT,
decreasing loss means that pre-trained models can learn the
general architecture of bytecode. The overfitting problem can
be solved by using a large dataset, so if we use more GPUs
and data, we can prevent the overfitting problem.

RQ1 Answer: byteT5 and byteBERT can learn the
structure of bytecode and semantic information about
constant pool and method instructions.

B. RQ2: Which of byteT5, byteBERT, and GPT-4o
achieves higher accuracy in bytecode span masking task?

To further evaluate the capability of byteT5, byteBERT,
and GPT-4o in bytecode analysis, we assess their accuracy
on the span masking task using a test dataset comprising
12,000 tokenized bytecode samples. In Table 1, GPT-4o shows
29.43% accuracy of span masking task, while byteT5 and
byteBERT shows results 53.82% and 64.58%, respectively.

It shows that while GPT-4o has some ability to work
with bytecode, its performance is much lower compared to
byteT5 and byteBERT. This difference comes from the
fact that GPT-4o does not have training focused on bytecode,
as it mainly uses general data from natural language and
source code. Without specific training for bytecode, GPT-4o
finds it hard to understand and correctly predict the complex
and detailed patterns found in bytecode. On the other hand,
byteT5 and byteBERT are specially made to understand
bytecode by training on a dataset of tokenized bytecode
samples. The results show that byteT5 and byteBERT not
only learn the basic structure but also understand the meaning
and connections in bytecode, allowing it to perform much
better in the span masking task.

Additionally, the byteT5 and byteBERT have differ-
ent accuracies of span masking task. The reason is that
byteBERT is a BERT-based approach, so it is good at masked
language modeling tasks [5]. However, byteT5 is based on
the T5 architecture [4], which means it is good at translation
tasks. We find that byteBERT achieves higher accuracy than
byteT5, due to its architecture.



RQ2 Answer: byteT5 and byteBERT achieve
53.82% and 64.58% accuracy respectively, and out-
perform GPT-4o, which achieves 29.43% accuracy. It
clearly demonstrates their significantly superior perfor-
mance in accuracy compared to GPT-4o.

VI. DISCUSSION

Our study reveals the significant potential of pre-trained
models in bytecode analysis. Specifically, even when op-
erating with limited computational resources, byteT5 and
byteBERT outperform GPT-4o in the span masking task.
This superior performance indicates that specialized models
tailored for bytecode are more effective in understanding and
processing low-level code representations compared to more
generalized models like GPT-4o. It underscores the importance
of domain-specific pre-training, as these models are better
equipped to capture the intricate patterns and structures inher-
ent in bytecode. Consequently, we expect that leveraging such
specialized pre-trained models can lead to more efficient and
accurate analysis in tasks related to software testing, security
vulnerability detection, or code optimization. To achieve these
goals, we plan to conduct the following follow-up studies.

A. Increasing model size

In pre-trained models, leveraging large amounts of data,
increasing the model parameters, and high-performance GPUs
is crucial for achieving optimal performance. The computa-
tional resources not only allow for processing more data but
also enable the training of larger and more complex models.
As previously mentioned, byteT5 and byteBERT have a
maximum input length of 512 tokens due to hardware limita-
tions. This restriction means that some input sequences may
be truncated, potentially causing the model to miss important
context or information contained in longer sequences.

By utilizing more GPUs with higher memory capacities, we
could increase the maximum input length beyond 512 tokens.
This extension would allow byteT5 and byteBERT to
process longer sequences, capturing more comprehensive byte-
code information and potentially improving its understanding
and performance on tasks that involve longer dependencies.

B. Representation of bytecode

We extract constant pool tag information and method in-
structions as input for our models to capture the essential
elements of Java bytecode. However, as previously mentioned,
some sequences exceed the maximum input length of 512 to-
kens. This limitation prevents byteT5 and byteBERT from
processing these longer sequences entirely. This leads to the
degradation of the model performance.

In these cases, alternative representations that can accom-
modate longer sequences without exceeding the model’s ca-
pacity are required. For example, methods that condense or
prioritize certain parts of the bytecode might help in fitting
more information within the input length limit. To explore
this, we will compare the performance of the ByteTok-based

bytecode pre-trained model with that of other tokenizer-
based bytecode pre-trained models. By evaluating different
tokenization and representation strategies, we aim to identify
an approach that effectively handles longer sequences and
enhances the model’s overall performance.

C. Potential Applications of Software Engineering Task
byteT5 and byteBERT use hexadecimal bytecode as

input instead of source code or an intermediate representation.
Our models enable direct modification and generation of actual
bytecode. To demonstrate their capabilities, we plan to conduct
additional experiments on downstream tasks such as test case
generation, vulnerability detection, program repair for live
patching, and other software engineering tasks. Furthermore,
the use of pre-trained models with bytecode remains an under-
explored area. In future work, we will compare our approach
with existing source code-based methods and the disassembled
bytecode-based approaches to evaluate their effectiveness.

D. Extension to other programming languages
One of the key advantages of bytecode is its scalability and

interoperability between different programming languages.
Languages such as Scala and Kotlin compile their source code
into bytecode, which is executed on the Java virtual machine
(JVM). This shared compilation target means that tools and
analysis developed for Java bytecode can potentially be applied
to programs written in these languages as well. To validate
this scalability and cross-language compatibility, we plan to
conduct experiments that analyze class files produced from
Scala and Kotlin source code using byteT5 and byteBERT.

VII. CONCLUSION

In this study, we have introduced byteT5 and byteBERT ,
the first trial of using a pre-trained model designed specifically
for bytecode analysis. Our experimental results demonstrate
that bytecode can be a viable input for pre-trained models, with
byteT5 and byteBERT outperforming GPT-4o on the span
masking task despite operating under constrained hardware
environments. This achievement highlights the effectiveness
of these models in understanding and processing bytecode
structures in hexadecimal format.

The significance of our work lies in opening new avenues
for bytecode analysis using machine learning techniques. By
successfully applying a pre-trained model to bytecode, we
pave the way for advanced analyses in software testing, secu-
rity, live patching, and cross-language interoperability within
the JVM ecosystem.

In conclusion, our models represent a promising step toward
integrating pre-trained models into bytecode analysis. This
work lays the groundwork for further research in this domain,
potentially leading to significant advances in software engi-
neering and machine learning applications related to bytecode.

ACKNOWLEDGEMENTS

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korean govern-
ment(MSIT) (RS-2024-00457866).



REFERENCES

[1] Y.-H. Choi and J. Nam, “On the naturalness of bytecode instructions,”
in Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022, pp. 1–5.

[2] T. Sun, K. Allix, K. Kim, X. Zhou, D. Kim, D. Lo, T. F. Bissyandé,
and J. Klein, “Dexbert: Effective, task-agnostic and fine-grained repre-
sentation learning of android bytecode,” IEEE Transactions on Software
Engineering, vol. 49, no. 10, pp. 4691–4706, 2023.

[3] M. Paganoni and C. A. Furia, “Verifying functional correctness proper-
ties at the level of java bytecode,” in International Symposium on Formal
Methods. Springer, 2023, pp. 343–363.

[4] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21,
no. 1, Jan. 2020.

[5] J. Devlin, “Bert: Pre-training of deep bidirectional transformers for
language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[6] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
19–30.

[7] D. B. Miracle, S. L. Donaldson, S. D. Henry, C. Moosbrugger, G. J.
Anton, B. R. Sanders, N. Hrivnak, C. Terman, J. Kinson, K. Muldoon
et al., ASM handbook. ASM international Materials Park, OH, 2001,
vol. 21.

[8] R. Sennrich, “Neural machine translation of rare words with subword
units,” arXiv preprint arXiv:1508.07909, 2015.

[9] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS workshop, 2011.

[10] I. Loshchilov, “Decoupled weight decay regularization,” arXiv preprint
arXiv:1711.05101, 2017.


