
1

Survey on Software Defect Prediction

Jaechang Nam

Abstract

Software defect prediction is one of the most active research areas in software engineering. Defect

prediction results provide the list of defect-prone source code artifacts so that quality assurance teams

can effectively allocate limited resources for validating software products by putting more effort on the

defect-prone source code. As the size of software projects becomes larger, defect prediction techniques

will play an important role to support developers as well as to speed up time to market with more

reliable software products.

In this survey, we first introduce the common defect prediction process used in the literature and how

to evaluate defect prediction performance. Second, we compare different defect prediction techniques

such as metrics, models, and algorithms. Third, we discuss various approaches for cross-project defect

prediction that is an actively studied topic in recent years. We then discuss applications on defect

prediction and other emerging topics. Finally, based on this survey, we identify challenging issues for

the next step of the software defect prediction.

I. INTRODUCTION

Software Defect (Bug) Prediction is one of the most active research areas in software en-

gineering [9], [31], [40], [47], [59], [75].1 Since defect prediction models provide the list of

bug-prone software artifacts, quality assurance teams can effectively allocate limited resources

for testing and investigating software products [40], [31], [75].

We survey more than 60 representative defect prediction papers published in about ten major

software engineering venues such as Transaction on Software Engineering (TSE), International

Conference on Software Engineering (ICSE), Foundations of Software Engineering (FSE) and

so on in recent ten years. Through this survey, we investigated major approaches of software

defect prediction and their trends.

We first introduce the common software defect prediction process and several research streams

in defect prediction in Section II. Since different evaluation measures for defect prediction have

1Defect and bug will be used interchangeably across this survey paper.

2

been used across the literature, we present evaluation measures for defect prediction models

in Section III. Section IV and V discusses defect prediction metrics and models used in the

representative papers. In Section VI, we discuss about prediction granularity. Before building

defect prediction models, some studies applied preprocessing techniques to improve prediction

performance. We briefly investigate preprocessing techniques used in the literature in Section VII.

As recent defect prediction studies have focused on cross-project defect prediction, we compare

various cross-project defect prediction approaches in Section VIII. In the next two sections of

Section VIII, we discuss about applications using defect prediction results and emerging topics.

Finally, we conclude this survey by raising challenging issues for defect prediction in Section XI.

II. OVERVIEW OF SOFTWARE DEFECT PREDICTION

A. Software Defect Prediction Process

Figure 1 shows the common process of software defect prediction based on machine learning

models. Most software defect prediction studies have utilized machine learning techniques [3],

[6], [10], [20], [31], [40], [45].

The first step to build a prediction model is to generate instances from software archives such

as version control systems, issue tracking systems, e-mail archives, and so on. Each instance can

represent a system, a software component (or package), a source code file, a class, a function

(or method), and/or a code change according to prediction granularity. An instance has several

metrics (or features) extracted from the software archives and is labeled with buggy/clean or

the number of bugs. For example, in Figure 1, instances generated from software archives are

labeled with ‘B’ (buggy), ‘C’ (clean), or the number of bugs.

After generating instances with metrics and labels, we can apply preprocessing techniques,

which are common in machine learning. Preprocessing techniques used in defect prediction

studies include feature selection, data normalization, and noise reduction [27], [40], [47], [63],

[71]. Preprocessing is an optional step so that preprocessing techniques were not applied on all

defect prediction studies, e.g., [10], [31].

With the final set of training instances, we can train a prediction model as shown in Figure 1.

The prediction model can predict whether a new instance has a bug or not. The prediction for

bug-proneness (buggy or clean) of an instance stands for binary classification, while that for the

number of bugs in an instance stands for regression.

3

Classification /
Regression

Software
Archives

B"
C"
C"

B"

...

2"
5"
0"

1"

...

Instances with
metrics and labels

B"
C"

B"

...

2"

0"

1"

...

Training Instances (Preprocessing)

Model

?"
New instance

Generate
Instances

Build
a model

Fig. 1: Common process of software defect prediction

Other metrics
•  Component Network

metrics (ZimmerMann`08)
•  Developer-Module Network

(Pinzger`08)
•  Developer Social Network

(Meneely`08)
•  Anti-pattern (Taba`13)

(Basili`96)

History of Defect Prediction
1970s 1980s 1990s 2000s 2010s

4

Simple metric and
model (Ajiyama`71)

Fitting model

Cyclomatic metric
(McCabe`76)

Halstead metrics
(Halstead`77)

Just-In-Time (JIT) Prediction models
(Mokus`00, Kim`08,Kamei`13,Fukushima`14)

Prediction model
(Classification)

(Munson et al.`92)

(Shen`85)

Process metrics

Prediction model
(Regression)

Process Metrics Extracted
from Software Repositories

•  Nagappan`05
•  Moser`08
•  Hassan`09
•  D’Ambros`10
•  Bacchelli`10
•  Bird`11
•  Lee`11
•  Rahman`11

CK metrics
(Chidamber222222222222222222
&Kemerer`94)2

Personalized model
(Jiang`13)

Cross-Project Prediction
•  Metric Compensation

(Watanabe`08)
•  NN Filter (Turhan`09)
•  TNB (Ma`12)
•  TCA+ (Nam`13)

Practical Model and Applications
•  Case study in Google (Lewis`13)
•  Test case prioritization

(Engstrom`10)
•  Compensate static bug finder

(Rahman`14)

Universal Model
(Zhang`13)

Cross-Project Feasibility
(Zimmermann`09, He`12)

Data Privacy
(Peters`12)

Fig. 2: History of software defect prediction studies

B. Brief History of Software Defect Prediction Studies

Figure 2 briefly shows the history of defect prediction studies in about last 50 years. The first

study estimating the number of defects was conducted by Akiyama in 1971 [1]. Based on the

4

assumption that complex source code could cause defects, Akiyama built a simple model using

lines of code (LOC) since LOC might represent the complexity of software systems. However,

LOC is too simple metric to show the complexity of systems. In this reason, MaCabe and

Halstead proposed the cyclomatic complexity metric and Halstead complexity metrics in 1976

and 1977 respectively [38], [18]. These metrics were very popular to build models for estimating

defects in 1970s and the early of 1980s [13].

Having said that though, the models studied in that period were not actually prediction

model but just fitting model that investigated the correlation between metrics and the number

of defects [13]. These models were not validated on new software modules. To resolve this

limitation of previous studies, Shen et al. built a linear regression model and test the model

on the new program modules [60]. However, Munson et al. claimed that the state-of-the art

regression techniques at that time were not precise and proposed a classification model that

classify modules into two groups, high risk and low risk [43]. The classification model actually

achieved 92% of accuracy on their subject system [43]. However, Munson et al.’s study still

have several limitations such as no metrics for object-oriented (OO) systems and few resources

to extract development process data. As Shen et al. pointed out at that time [60], it was not

possible to collect error fix information informally conducted by individual developers in unit

testing phases.

In terms of OO systems, Chidamber and Kemerer proposed several object-oriented metrics

in 1994 [7] and was used by Basili et al. to predict defects in object-oriented system [4]. In

1990s, version control systems were getting popular, development history was accumulated into

software repositories so that various process metrics were proposed from the middle of 2000s [3],

[6], [9], [20], [31], [42], [45], [59].

In 2000s, there had been existed several limitations for defect prediction. The first limitation

was the prediction model could be usable before the product release for the purpose of quality

assurance. However, it would be more helpful if we can predict defects whenever we change

the source code. To make this possible, Mockus et al. proposed a defect prediction model for

changes [41]. Recently, this kind of models is called as just-in-time (JIT) defect prediction

models. JIT prediction models have been studied by other researchers in recent years [15], [25],

[26].

The second limitation is that it was not possible or difficult to build a prediction model for new

5

projects or projects having less historical data. As use of process metrics was getting popular, this

limitation became the one of the most difficult problems in software defect prediction studies [76].

To resolve this issue, researchers proposed various cross-project defect prediction models [36],

[47], [67], [69]. In cross-project defect prediction, identifying cross-prediction was another issue

so that Zimmermann et al. and He et al. conducted the study on cross-prediction feasibility [76],

[22].

The third limitation was from the question, “are the defect prediction models really helpful

in industry?”. In this direction, several studies such as case study and proposing practical

applications have been conducted [12], [33], [57].

There have been several studies following the trends of information technology as well.

By using social network analysis and/or network measures, new metrics were proposed by

Zimmermann et al. [75], Pinzger et al [54], and Taba et al. [66]. Privacy issue of defect datasets

was also addressed by Peters et al. [53]. New concepts of prediction models have been proposed

such as personalized defect prediction model [23] and universal model [73] recently.

In the next subsection, we categorized these studies by related subtopics.

C. Categories of Software Defect Prediction Studies

Table I lists the representative studies in software defect prediction. Many research studies

in a decade have focused on proposing new metrics to build prediction models. Widely studied

metrics are source code and process metrics [56]. Source code metrics measure how source code

is complex and the main rationale of the source code metrics is that source code with higher

complexity can be more bug-prone. Process metrics are extracted from software archives such

as version control systems and issue tracking systems that manage all development histories.

Process metrics quantify many aspects of software development process such as changes of

source code, ownership of source code files, developer interactions, etc. Usefulness of process

metrics for defect prediction has been proved in many studies [20], [31], [45], [56].

As introduced in Section II-A, most defect prediction studies are conducted based on statistical

approach, i.e. machine learning. Prediction models learned by machine learning algorithms can

predict either bug-proneness of source code (classification) or the number of defects in source

code (regression). Some research studies adopted recent machine learning techniques such as

active/semi-supervised learning to improve prediction performance [34], [68]. Kim et al. proposed

6

TABLE I: Representative studies in software defect prediction

Type Categories Representatives

Within/Cross

Metrics Source code [40], Process (Churn [45], [10],

Change [42], Entropy [20], Popularity [3],

Authorship [55], Ownership [6], MIM [31]), Network

measure [39], [54], [75], Antipattern [66]

Algorithm/Model Classification, Regression, Active/Semi-supervised

learning [34], [68], BugCache [29]

Finer prediction granularity Change classification [26], Method-level prediction [21]

Preprocessing Feature selection/extraction [63], [45], Normaliza-

tion [40], [47], Noise handling [27], [71]

Cross
Transfer learning Metric compensation [69], NN Filter [67], TNB [36],

TCA+ [47]

Feasibility Decision Tree [76], [22]

BugCache algorithm, which utilizes locality information of previous defects and keeps a list of

most bug-prone source code files or methods [29]. BugCache algorithm is a non-statistical model

and different from the existing defect prediction approaches using machine learning techniques.

Researchers also focused on finer prediction granularity. Defect prediction models tried to

identify defects in system, component/package, or file/class levels. Recent studies showed the

possibility to identify defects even in module/method and change levels [21], [26]. Finer granu-

larity can help developers by narrowing the scope of source code review for quality assurance.

Proposing preprocessing techniques for prediction models is also an important research branch

in defect prediction studies. Before building a prediction model, we may apply the following

techniques: feature selection [63], normalization [40], [47], and noise handling [27], [71]. With

the preprocessing techniques proposed, prediction performance could be improved in the related

studies [27], [63], [71].

Researchers also have proposed approaches for cross-project defect prediction. Most repre-

sentative studies described above have been conducted and verified under the within-prediction

setting, i.e. prediction models were built and tested in the same project. However, it is difficult for

7

new projects, which do not have enough development historical information, to build prediction

models. Representative approaches for cross defect prediction are metric compensation [69],

Nearest Neighbour (NN) Filter [67], Transfer Naive Bayes (TNB) [36], and TCA+ [47]. These

approaches adapt a prediction model by selecting similar instances, transforming data values, or

developing a new model [67], [47], [36], [69].

Another interesting topic in cross-project defect prediction is to investigate feasibility of

cross-prediction. Many studies confirmed that cross-prediction is hard to achieve; only few

cross-prediction combinations work [76]. Identifying cross-prediction feasibility will play a vital

role for cross-project defect prediction. There is a couple of studies regarding cross prediction

feasibility based on decision trees [76], [22]. However their decision trees were verified only in

specific software datasets and were not deeply investigated [76], [22].

III. EVALUATION MEASURES

For defect prediction performance, various measures have been used in the literature.

A. Measures for Classification

To measure defect prediction results by classification models, we should consider the following

prediction outcomes first:

• True positive (TP): buggy instances predicted as buggy.

• False positives (FP): clean instances predicted as buggy.

• True negative (TN): clean instances predicted as clean.

• False negative (FN): buggy instances predicted as clean.

With these outcomes, we can define the following measures, which are mostly used in the

defect prediction literature.

1) False positive rate (FPR): False positive rate is also know as probability of false alarm

(PF) [40]. PF measures how many clean instances are predicted as buggy among all clean

instances.

FP

TN + FP
(1)

8

2) Accuracy:
TP + TN

TP + FP + TN + FN
(2)

Accuracy considers both true positives and true negatives over all instances. In other words,

accuracy shows the ratio of all correctly classified instances. However, accuracy is not proper

measure particularly in defect prediction because of class imbalance of defect prediction datasets.

For example, average buggy rate of PROMISE datasets used by Peters et al. [53] is 18%. If we

assume a prediction model that predicts all instances as clean, the accuracy will be 0.82 although

no buggy instances are correctly predicted. This does not make sense in terms of defect prediction

performance. Thus, accuracy has not been not recommended for defect prediction [58]

3) Precision:
TP

TP + FP
(3)

4) Recall: Recall is also know as probability of detection (PD) or true positive rate (TPR) [40].

Recall measures correctly predicted buggy instances among all buggy instances.

TP

TP + FN
(4)

5) F-measure: F-measure is a harmonic mean of precision and recall [31].

2× (Precision×Recall)

Precision+Recall
(5)

Since precision and recall have trade-off, f-measure has been used in many papers [27], [31],

[47], [56], [71].

6) AUC: AUC measures the area under the receiver operating characteristic (ROC) curve.

The ROC curve is plotted by PF and PD together. Figure 3 explains about a typical ROC curve.

PF and PD vary based on threshold for prediction probability of each classified instance. By

changing the threshold, we can draw a curve as shown in Figure 3. When the model gets better,

the curve tends to be close to the point of PD=1 and PF=0. Thus, AUC of the perfect model

will have “1”. For a random model, the curve will be close to the straight line from (0,0) to

(1,1) [40], [58]. AUC with 0.5 is regarded as the random prediction [58]. Other measures such as

precision and recall can vary according to prediction threshold values. However, AUC considers

prediction performance in all possible threshold values. In this reason, AUC is a stable measure

to compare different prediction models [58].

9

order). Randomizing the order of the inputs defends against
order effects.

These M !N studies implement a holdout study which, as
argued above, is necessary to properly assess the value of a
learned predictor. Holdout studies assess a learned predictor
usingdatanotused togenerate it. Suchholdout studies are the
preferred evaluation method when the goal is to produce
predictors intended to predict future events [23].

The 10 ! 10-way study was wrapped inside scripts that
explored different subsets of the attributes in the order
suggested by InfoGain (2). In the innermost loop of the
study, some method was applied to some data set. As shown
in the third to the last line of Fig. 7, these methodswere some
combination of filter, attributes’, and learner.

7 ASSESSING PERFORMANCE

The performance of the learners on the MDP data was
assessed using receiver-operator (ROC) curves. Formally, a
defect predictor hunts for a signal that a software module is
defect prone. Signal detection theory [42] offers ROC
curves as an analysis method for assessing different
predictors. A typical ROC curve is shown in Fig. 8. The
y-axis shows probability of detection (pd) and the x-axis
shows probability of false alarms (pf). By definition, the
ROC curve must pass through the points pf ¼ pd ¼ 0 and
pf ¼ pd ¼ 1 (a predictor that never triggers never makes
false alarms; a predictor that always triggers always
generates false alarms). Three interesting trajectories con-
nect these points:

1. A straight line from (0, 0) to (1, 1) is of little interest
since it offers no information; i.e., the probability of a
predictor firing is the same as it being silent.

2. Another trajectory is the negative curve that bends
away from the ideal point. Elsewhere [14], we have
found that if predictors negate their tests, the
negative curve will transpose into a preferred curve.

3. The point (pf ¼ 0, pd ¼ 1) is the ideal position (a.k.a.
“sweet spot”) on a ROC curve. This is where we
recognize all errors and never make mistakes.
Preferred curves bend up toward this ideal point.

In the ideal case, a predictor has a high probability of
detecting a genuine fault (pd) and a very low probability of
false alarm (pf). This ideal case is very rare. The only way to
achieve high probabilities of detection is to trigger the

predictor more often. This, in turn, incurs the cost of more
false alarms.

Pf and pd can be calculated using the ROC sheet of
Fig. 9. Consider a predictor which, when presented with
some signal, either triggers or is silent. If some oracle knows
whether or not the signal is actually present, then Fig. 9
shows four interesting situations. The predictor may be
silent when the signal is absent (cell A) or present (cell B).
Alternatively, if the predictor registers a signal, sometimes
the signal is actually absent (cell C) and sometimes it is
present (cell D).

If the predictor registers a signal, there are three cases of
interest. In one case, the predictor has correctly recognized
the signal. This probability of this detection is the ratio of
detected signals, true positives, to all signals:

probability detection ¼ pd ¼ recall ¼ D=ðBþDÞ: ð3Þ

(Note that pd is also called recall.) In another case, the
probability of a false alarm is the ratio of detections when
no signal was present to all nonsignals:

probability false alarm ¼ pf ¼ C=ðAþ CÞ: ð4Þ

For convenience, we say that notPf is the complement of pf :

notPf ¼ 1& C=ðAþ CÞ: ð5Þ

Fig. 9 also lets us define the accuracy, or acc, of a predictor as
the percentage of true negatives and true positives:

accuracy ¼ acc ¼ ðAþDÞ=ðAþBþ C þDÞ: ð6Þ

If reported as percentages, these attributes have the
range

0 ' acc%; pd%; ; notPf% ' 100:

Ideally, we seek predictors that maximize acc percent,
pd percent, and notPf percent.

Note that maximizing any one of these does not imply
high values for the others. For example, Fig. 9 shows an
example with a high accuracy (83 percent) but a low
probability of detection (37 percent). Accuracy is a good
measure of a learner’s performance when the possible
outcomes occur with similar frequencies. The data sets used
in this study, however, have very uneven class distributions
(see Fig. 3). Therefore, this paper will assess its learned
predictors using bal, pd, and notPf and not acc.

In practice, engineers balance between pf and pd. To
operationalize this notion of balance, we define bal to be the

MENZIES ET AL.: DATA MINING STATIC CODE ATTRIBUTES TO LEARN DEFECT PREDICTORS 7

Fig. 8. Regions of a typical ROC curve.

Fig. 9. A ROC sheet assessing the predictor vðgÞ (10. Each cell
{A,B,C,D} shows the number of modules that fall into each cell of this
ROC sheet. The bal (or balance) variable is defined below.

Fig. 3: A typical ROC curve [40]

7) AUCEC: Area under cost-effectiveness curve (AUCEC) is a defect prediction measure con-

sidering lines of code (LOC) to be inspected or tested by quality assurance teams or developers.

The idea of cost-effectiveness for defect prediction models is proposed by Arisholm et al. [2].

Cost-effectiveness represents how many defects can be found among top n% LOC inspected or

tested. In other words, if a certain predection model can find more defects with less inspecting

and testing effort comparing to other models, we could say the cost-effectiveness of the model

is higher.

Figure 4 shows cost-effectiveness curves as examples [59]. The x-axis represents the percent-

age of LOC while y-axis represents the percentage of defects found [59]. In the left side of

the figure, three example curves are plotted. Let assume the curves, O, P, and R, represent the

optimal, practical, and random models, respectively [59]. If we consider the area under the curve,

the optimal model will have the highest AUCEC comparing to other models [59]. In case of the

random model, AUCEC will be 0.5. The higher AUCEC of the optimal model means that we

can find more defects by inspecting or testing less LOC than other models [59].

However, considering AUCEC from the whole LOC may not make sense [59]. In the right

side of Figure 4, the cost-effectiveness curves of the models, P1 and P2, are identical so that

considering the whole LOC for AUCEC does not give any meaningful insight [59]. Having said

that, if we set a threshold as top 20% of LOC, the model P2 has higher AUCEC than R and

10

100

75

50

25

100755025
Percent of LOC

Pe
rc

en
t o

f B
ug

s
Fo

un
d

O
P

R 75

50

25

100755025
Percent of LOC

Pe
rc

en
t o

f B
ug

s
Fo

un
d

100
20% P1

P2

R

Figure 1: Cost Effectiveness Curve. On the left, O is

the optimal, R is random, and P is a possible, practical,

predictor model. On the right, we have two different

models P1 and P2, with the same overall performance,

but P2 is better when inspecting 20% of the lines or less.

.

this procedure would allow us to inspect just a few lines of
code to find most of the defects. If the algorithm performs
poorly and/or the defects are uniformly distributed in the
code, we would expect to inspect most of the lines before we
find all the defects. The CE curve (see Figure 1, left side)
is a harsh but meticulous judge of prediction algorithms; it
plots the proportion of identified faults (a number between
0 and 1) found against the proportion of the lines of code
(also between 0 and 1) inspected. It is a way to evaluate a
proposed inspection ordering. With a random ordering (the
curve labeled R on the left side of Figure 1) and/or defects
uniformly scattered throughout the code, the CE curve is the
diagonal y = x line. At file-granularity, the optimal ordering
(labeled O in the Figure 1 left) places the smallest, most
defective files first, and the curve climbs rapidly, quickly
rising well above the y = x line. A practical algorithm has a
CE curve (labeled P in the Figure 1 left) that falls below the
optimal ordering, but remains usefully above the y = x line.

The CE curve represents a variety of operating choices:
one can choose an operating point along this curve, inspect
more or fewer lines of code and find more or fewer defects.
Thus, to jointly capture the entire set of choices afforded
by a particular prediction algorithm, one typically uses the
area under the CE curve, or aucec, which is also a number
between 0 and 1. An imaginary, utterly fantastical, prediction
algorithm will have an area very close to 1, viz., by ordering
the lines so that one can discover all the defects by inspecting
a single line; a superb algorithm will have a aucec value
close to the optimal. Values of aucec below 1/2 indicate a
poor algorithm. Thus, useful values of aucec lie between
1/2 and the optimum.

Consider two different prediction models with nearly iden-
tical aucec. On the right side of Figure 1, the two curves
labeled P1 and P2 have very similar aucec values. How-
ever, if one were inspecting 20% of the lines or less, P2
offers a better set of operating points. This line budget is
indeed quite realistic: inspecting 20% of the LOC in the
system is definitely more realistic than inspecting all of it.
Thus, the aucec, cut off at 20%, is a useful measure of
the cost-effectiveness of a prediction model; this is what we
use. Arisholm et al. [3] refer to a similar notion of aucec,
conditioned on choosing 20% of the system. As it turns out,
the preferred FixCache cache size setting of 10% of the
overall number of files in the system, typically results in a

cache that contains close to 20% of the LOC in the system.
So we adopt aucec at 20% of the LOC, which we refer to as
aucec20.

3. EXPERIMENTAL FRAMEWORK
In this section, we define some terminology and present

our experimental setup.

3.1 Revision
Source code management (SCM) systems provide a rich

version history of software projects. This history includes all
commits to every file. These commits have various attributes
such as a timestamp, authorship, change content, and commit
log message. In our study, a commit, or a revision, consists of
an author, a timestamp and a set of files changed. We chose
Git as our version control system, because of its excellent
ability to track changes and find the origin of each line of
code.

3.2 Bug-fixing Revision
Bugs are discovered and usually recorded into an issue-

tracking system such as Bugzilla and subsequently rejected
or fixed by the developers. Each bug report records its
opening date, the date of the bug fix, a free-form textual bug
description, and the final, triaged Bugzilla severity. For this
research, we consider any severity other than an enhancement

to be a bug.
Our study begins with links between Bugzilla bugs and the

specific revision that fixes the bug — we call this a bug-fixing
revision. We employed various heuristics to derive our data.
We scan for keywords, such as“bug”, “fixed”, etc., in the SCM
commit log to flag bug-fixing revisions [16]. Also, numerical
bug identifiers, mentioned in the commit log, are linked back
to the issue tracking system’s identifiers [8, 21]. Then these
identifiers are crosschecked against the issue tracking system
to see whether such an issue identifier exists and whether
its status changed after the bug-fixing commit. Finally, we
manually inspect the links to remove as many spurious links
as possible. Each remaining linked bug has a bug-fixing
revision. We gratefully acknowledge bug data we obtained
from Bachmann et al. [4].

3.3 Bug-Introducing Change
We call the lines of code that are associated with the

changes that trigger a bug fix “fix-inducing code”, following
Sliwerski et al. [20] (also see [11]), as it is the code that
needed repair. For example, if strcpy (str2,str1); were
changed to strncpy(str2,str1,n); then the original line is
considered fix-inducing code. New lines may also be added
in the bug-fixing revision, but we do not consider these
“implicated”, since they are part of the treatment, not the
symptom. Kim et al. uses the term bug-introducing change
to describe such fix-inducing code.

We use the popular Sliwerski-Zimmerman-Zeller SZZ [20]
approach to identify bug-introducing changes. We start
with data that links a bug to the revision where that bug
was fixed. If a bug fix is linked to revision n + 1, then n,
the immediately preceding revision, contains the relevant
buggy code. The diff of revision n and n + 1 of each file
changed in revision n + 1 gives us the potentially buggy
code. We call these lines the fix-inducing code. We then use
the git blame command on the fix-inducing code; git blame

produces accurate provenance annotations (author, date,

Fig. 4: Cost-effectiveness curve [59]

P2 [59]. In this reason, we need to consider a particular threshold for the percentage of LOC to

use AUCEC as a prediction measure [59].

B. Measures for Regression

To measure defect prediction results from regression models, measures based on correlation

calculation between the number of actual bugs and predicted bugs of instances have been used in

many defect prediction papers [3], [46], [62], [75]. The representative measures are Spearman’s

correlation, Pearson correlation, R2 and their variations [3], [46], [62], [75]. These measures

also has been used for correlation analysis between metric values and the number of bugs [75].

C. Discussion on Measures

Figure 5 shows the count of evaluation measures used in the representative defect prediction

papers for classification. As shown in the figure, f-measure is the most frequently used measure

for defect classification. Since there are trade-off between precision and recall, comparing dif-

ferent models are not easy as some models have high precision but low recall and vice versa

for other models. Since f-measure is a harmonic mean of precision and recall and provides one

11

PF Accuracy Precision Recall (PD) F-measure AUC AUCEC

Measures

0
2

4
6

8
10

12

Fig. 5: Count of evaluation measures used in the representative defect prediction papers for

classification.

single score as prediction performance, f-measure has been used to compare different prediction

models in many defect prediction papers [27], [31], [47], [53], [58], [61].

However, f-measure varies by different thresholds (cutoffs) for prediction probability of an

instance. When a model predicts an instance as buggy, it provides prediction probability that

represents if the instance is buggy. Lessmann et al. pointed out that what thresholds were used

in evaluation usually overlooked in the defect prediction literature so that it led to inconsistent

prediction results across defect prediction papers [32].

To overcome the limitation of f-measures, researchers also used other measures such as AUC

and AUCEC that are independent from the thresholds [16], [32], [58], [65]. Particularly, AUCEC

recently used a lot by Rahmann et al. since AUCEC could be a good measure to evaluate

prediction models in the view of practical use of models [56], [58], [59].

IV. DEFECT PREDICTION METRICS

Defect prediction metrics play the most important role to build a statistical prediction model.

Most defect prediction metrics can be categorized into two kinds: code metrics and process

metrics. Code metrics are directly collected existing source code while process metrics are

collected from historical information archived in various software repositories such as version

control and issue tracking systems.

12

A. Code metrics

Code metrics also known as product metrics measure complexity of source code. Its ground

assumption is that complexity source is more bug-prone. To measure code complexity, researchers

proposed various metrics.

TABLE II: Representative code metrics

Code Metrics Size [1] Halstead [18] McCabe [38], [48] CK [7], [4] OO [11]

Venue IFIPSC’71 (Book)’77 TSE’76,’96 TSE’94,’96 JSS’94

The size metrics measure “volume, length, quantity, and overall magnitude of software prod-

ucts” [8]. The representative of size metrics is lines of code (LOC). To our knowledge, Akiyama’s

model was the earliest study to predict defects using LOC [1]. Afterwards, LOC was used in

most defect prediction papers to build a model [10], [21], [31], [40], [61], [65].

Halstead proposed several size metrics based on the number of operators and operands [18].

The proposed metrics are program vocabulary, length, volume, difficult, effort, and time [18].

Most metrics are related to size or quantity. Halstead metrics has been used popularly in many

studies [40], [65], [67].

McCabe proposed the cyclomatic metric to represent complexity of software products [38].

Cyclomatic metric is computed by the number of nodes, arcs and connected components in

control flow graphs of source code. This metric represents how much control paths are complex.

Since McCabe’s cyclomatic metric measure the complexity of source code structure, its charac-

teristic is inherently different from size and Halstead metrics that measure volume and quantity

of source code. Ohlsson and Alberg adopted McCabe’s cyclomatic metric to predict fault-prone

modules in telephone switched [48] and other defect prediction studies [32], [40], [42], [47],

[65], [67] also used McCabe’s cyclomatic metric to build a prediction model.

Since object-oriented programming is getting popular, code metrics for object-oriented lan-

guages have proposed to improve development process. The representative metrics for object-

oriented programs are Chidamber and Kemerer (CK) metrics [7]. Table III lists CK metrics.

The CK metrics were designed from the characteristics from object-oriented languages such as

13

inheritance, coupling, and cohesion [7]. Basili et al. [4] validated if it is possible to build a

defect prediction model using the CK metrics. After that, many studies include CK metrics to

build prediction models [3], [10], [24], [27], [31], [50], [71].

TABLE III: CK metrics [7]

Name Description

WMC Wighted methods per class

DIT Depth of inheritance tree

NOC Number of children

CBO Coupling between object classes

RFC Response for a class

LCOM Lack of cohesion in methods

Besides the CK metrics, other object-oriented (OO) metrics based on volume and quantity of

source code, have been proposed as well [11]. As size metrics, the OO metrics simply counts the

number of instance variables, methods, and etc. as shown in Table IV. Many defect prediction

studies for object-oriented programs have used the OO metrics to build prediction models [10],

[27], [31], [50], [71], [74], [75].

B. Process metrics

Table V lists seven representative process metrics. In this section, we briefly introduce the

metrics and their design concepts.

1) Relative code change churn: Nagappan and ball [45] proposed 8 relative code churn metrics

(M1-M8) measuring the amount of code changes [45]. For example, M1 metric is computed by

churned LOC (the accumulative number of deleted and added lines between a base version and a

new version of a source file) divided by Total LOC [45]. Other metrics (M2-M8) consider various

normalized changes such as deleted LOC divided by total LOC, file churned (the number of

changed files in a component) divided by file count, and so on [45]. In case study by Nagappan

and ball, the relative churn metrics is proved as a good predictor to explain the defect density

of a binary and bug-proneness [45].

14

TABLE IV: Example class-level OO metrics used by D’Amabros et al [10]

Name Description

FanIn Number of other classes that reference the class

FanOut Number of other classes referenced by the class

NOA Number of attributes

NOPA Number of public attributes

NOPRA Number of private attributes

NOAI Number of attributes inherited

LOC Number of lines of code in a class

NOM Number of methods

NOPM Number of public methods

NOPRM Number of private methods

NOMI Number of methods inherited

TABLE V: Representative process metrics

Process Metrics # of Metrics Metric Source Venue

Relative code change churn [45] 8 Version control ICSE’05

Change [42] 17 Version control ICSE’08

Change Entropy [20] 1 Version control ICSE’09

Code metric churn, Code Entropy [9], [10] 2 Version control MSR’09

Popularity [3] 5 E-mail archive FASE’10

Ownership [6] 4 Version control FSE’11

Micro interaction metrics [31] 56 Mylyn FSE’11

2) Change metrics: Change metrics are to measure the extent of changes in the history

recorded in version control systems. For example, we can count the number of revisions/bug-

fix changes/refactorings of a file and the number of authors editing a file. Moser et al. [42]

extracted 18 change metrics from the Eclipse repositories to conduct a comparative analysis

15

between code and change metrics. Moser et al.’s change metrics [42] also include added and

deleted LOC similar to relative code change churn [45]. However, Moser et al.’s change metrics

did not consider any relativeness by the total LOC and the file count but consider average and

maximum values of change churn metrics. Moser et al.’s metrics also include maximum and

average of change sets (the number of files committed together) and age metrics (age of a file

in weeks and the weighted age normalized by added LOC) [42]. Moser et al. concluded that

change metrics are better predictors than code metrics [42].

3) Change Entropy: Hassan applied Shannon’s entropy to capture how changes are complex

and proposed history complexity metric (HCM) [20]. To validate the HCM, Hassan built sta-

tistical linear regression models based on HCM or two change metrics, the number of previous

modifications and previous faults on six open-source projects [20]. Their evaluation on six open-

source projects showed that prediction models build using HCM outperform those using the two

change metrics [20]. The idea adopting the Entropy concept to measure change complexity is

novel but comparing models by HCM to those by only two change metrics reveals the weakness

of the evaluation of HCM. In addition, evaluation was conducted in the subsystem-level rather

than the file-level.

4) Code metric churn, Code Entropy: D’Ambros et al. conducted extensive comparisons study

of defect prediction metrics [9]. In their metric comparison, there is no study about code metric

churn and code Entropy while code churn and change Entropy metrics have studied as introduced

in previous subsections [45], [20]. Thus, D’Ambros et al. proposed code metric churn (CHU)

and code Entropy (HH) metrics [9].

In contrast to code change metrics based on the amount of lines, CHU measures the change

in biweekly basis of code metrics such as CK metrics and OO metrics. Since code metric churn

computes the amount of changes in biweekly basis [9], CHU captures the extent of changes

more precisely than code change churn that computes the amount of changes between a base

revision and a new revision [45]. Four variants of CHU by applying decay functions (WCHU,

LDCHU, EDCHU, and LGDCHU) also were proposed [9].

While change Entropy is computed based on the count of file changes, code Entropy (HH)

is computed based on the count of involved files when a certain code metric is changed. As in

CHU, D’Ambros et al. also defined four variants of HH by applying decay functions (HWH,

LDHH, EDHH, and LGDHH) [9].

16

In the comparison evaluation, D’Ambros et al. concluded that WCHU and LDHH metrics led

to good prediction results on all subjects used in their experiments [9]. However, limitations of

these novel metrics is heavy computation resources and data because it tracks biweekly changes

from version control systems [9].

5) Popularity: Bacchelli et al. proposed popularity metrics by analyzing e-mail archives by

developers in a group mailing list [3]. The main idea of popularity metrics is more discussed

software artifacts in e-mail archives are more bug-prone [3]. Table VI lists the popularity metrics.

Most metrics quantify how many times a certain class are discussed in mails [3]. The extracting

metrics from e-mail archives is novel but their evaluation of the metrics shows that popularity

metrics themselves did not outperform other code and process metrics [3].

TABLE VI: Popularity metrics [3]

Name Description

POP-NOM The number of mails discussing a class.

POP-NOCM The number of characters in all mail discussing a class.

POP-NOT The number of e-mail threads discussing different topics for a class

POP-NOMT The number of e-mails in a thread discussing a class in at least one of mails in a thread.

POP-NOA The number of authors motioning about the same class.

6) Ownership and Authorship: Bird et al. proposed four ownership metrics based on authorship

of a component [6]. This study is started from the question, “How much does ownership affect

quality?” [6]. The ownership of a component is defined by the portion of commits of the

component and minor and major contributors are defined by less than and more than 5% portions

of the ownership respectively [6]. Four ownership metrics are defined a follows; MINOR (the

number of minor contributors), MAJOR (the number of major contributors), TOTAL (the total

number of contributors), and OWNERSHIP (portion of ownership of the contributor with the

highest portion of ownership). They concluded that higher ownership leads to less bug-prone [6].

Rahman et al. conducted the fine-grained investigation on relationship between defects and

human factors such as ownership and developer experience [55]. The interesting finding of this

study is that quality assurance should be focused on source code files touched by less experienced

17

developers [55].

7) Micro interaction metrics: Lee at al. proposed micro interaction metrics (MIM) extracted

from Mylyn that captures developer interactions to Eclipse [31]. The main idea of MIM is from

the fact that defects could be introduced by mistakes of developers [31]. For example, more

editing time of a certain source code file may cause more bug-proneness. Since Mylyn data

contains developer’s interactions to Eclipse, Lee et al. extracted 56 metrics from Mylyn data and

compared their performance with code and process metrics [31].

In their experiments, MIM outperformed code and process metrics in both classification and

regression [31]. However, MIM is highly depended on Mylyn, a plug-in of Eclipse so that MIM

might be hard to apply for other development environments that does not support the tool like

Mylyn [31].

C. Other metrics

Apart from code and process metrics, researchers proposed new kinds of metrics based on

existing knowledge such as network measure [39], [54], [75] and anti-pattern [66].

Meneely et al. extracted developer metrics from a developer social network that represents

collaboration structure extracted from source code repositories [39]. Based on this developer

social network, this study found that software failure is highly correlated with developer network

metrics [39].

Pinzger et al. also constructed developer network but also with software modules, i.e. developer-

module network [54]. This network represents how each developer contributes to each module so

that the network is called ‘contribution network’ as well [54]. Pinzger et al. found that the central-

ity measures for the contribution network can prediction post-release defects significantly [54].

Zimmermann et al. constructed dependency (such as data and call dependencies) graphs

of binaries and conducted network analysis on those dependency graphs [75]. From various

network analysis measures such as centralness, closeness, betweenness, and so on, Zimmermann

et al. built prediction models and compared them to models constructed by code and process

metrics [75]. In their evaluation, network measure could predict more bug-prone binaries than

code and process metrics.

Taba et al. [66] proposed four antipattern metrics. Antipatterns are poor design of software

so that there might be higher chance to introduce defects in the source code files [66]. In

18

Size Halstead McCabe CK OO Churn Change Entropy

Use frequency of defect prediction metrics in the reprentive defect prediction papers.

0
5

10
15

20

Fig. 6: Use frequency of defect prediction metrics in the representative defect prediction papers.

their evaluation with two open source projects, antipattern metrics could improve prediction

performance in terms of f-measure [66].

D. Discussion on code metrics vs. process metrics

Figure 6 shows the use frequency of metrics in the representative defect prediction papers.

Since code metrics such as size, Hastead, McCabe, CK and OO metrics have used from 1970s

or 1990s, absolute use frequency of code metrics is higher than process metrics. In addition,

code metrics used a lot for comparison study whenever new kinds of metrics are proposed. Most

process metrics have been proposed in 2000s from when software repositories such as version

control and issue tracking systems get popular.

There are lots of debates if code metrics are good defect predictors and process metrics are

better than code metrics. Menzies et al. confirmed that code metrics are still useful to build a

defect prediction model [40]. However, according to Rahman et al.’s recent study comparing

code and process metrics, code metrics is less useful than process metrics because of stagnation

of code metrics [56].

V. DEFECT PREDICTION MODELS

Most defect prediction models are based on machine learning. Depending on what to predict

(bug-proneness of the number of bugs), models based on machine learning are divided into two

types, classification and regression. Since new machine learning techniques are being developed,

active or semi-supervised learning techniques have been applied to build better defect prediction

19

Classification (C) Regression (R) Both (C and R) Active/Semi BugCache

Use frequency of defect prediction models in the reprentive defect prediction papers.

0
10

20
30

40

Fig. 7: Use frequency of defect prediction models in the representative defect prediction papers.

models as well [34], [35]. Apart from machine learning models, non-statistical model such as

BugCache [29] has been proposed.

Figure 7 shows the use frequency of defect prediction models in the representative defect

prediction papers. Since statistical models based on machine learning studied for a long time,

classification and regression models are dominant models. As Kim et al. proposed BugCache [29],

there were a couple of studies investigating BugCache models as well as case studies [12], [33],

[59].

Classification and regression have the similar prediction process since they are based on

machine learning. The difference between classification and regression models is what to predict.

Classification models usually identify bug-proneness [40], [42], [76] while regression models

predict the number of bugs [45], [44], [75]. The answer for the question, ‘which model should

be used by quality assurance teams?’ is depended on the intended purpose of the model users.

Figure 8 shows the use frequency of representative machine learners in the literature. Logistic

regression is the most frequent machine learners in the representative papers. Naive Bayes and

Decision Tree are also frequently used in the literature.

In terms of machine learners for regression models, Linear Regression and Negative Binomial

Regression have been mostly used in the literature [6], [10], [24], [31], [49], [62], [70].

As new machine learning approaches such as active or semi-supervised learning have been

proposed, software engineering community has tried to adopt those approaches for defect pre-

diction. Lu and Cukic [35] proposed defect prediction models based on active learning where a

sample set of instances is selected and the instances are asked to an oracle (human professionals)

20

Logistic Regression Naive Bayes Decision Tree SVM Random Forest Bayesian Network

Use frequency of classification machine learners in the reprentive defect prediction papers.

0
5

10
15

Fig. 8: Use frequency of classification machine learners in the representative defect prediction

papers.

if the instances could be a good training set. Li et al. proposed CoFest and ACoFest [35]. CoFest

is a sampling approach based on semi-supervised learning by repeatedly evaluating prediction

performance with a random sample through Random Forest to find the best sample [35]. ACoFest

is an extended version of CoFest by applying active learning [35].

Kim et al. proposed BugCache, which maintains the priority of bug-prone entities in a

cache [29]. In their evaluation on seven open source projects, 10% of files have 73% - 95% of

whole defects [29]. The BugCache facilitates locality information of bugs such as temporal and

spacial locality (if a bug of an entity is introduced recently or the entity is changed with other

entities, those entities might have bugs with higher change.) [29].

VI. PREDICTION GRANULARITY

In the literature, defect prediction models were constructed in various levels of granularity

such as sub-system [14], [20], [30], component/package [32], [45], [75], file/class [40], [37],

[47], [49], [76], method [16], [21], and change (hunk) [26]. Since the resource allocation for

software quality assurance can be conducted by quality assurance teams’ own focus, studies on

defect prediction models seem to be conducted on various granularity levels.

A recent study by Hata et al. [21] proposed method-level defect prediction and concluded that

method-level defect prediction is more cost-effective than other higher granularity levels such

as package- and file-levels.

21

Kim et al. proposed a novel defect prediction model called change classification [26]. Different

from common defect prediction models, change classification can be directly helpful to devel-

opers since a change classification model can provide an instant prediction result whenever a

developer makes any change on source code files and commit it to a version control system [26].

However, change classification models are too heavy to use in practice since the models are built

by more than ten thousand features [26].

To use defect prediction models in practice, we should consider cost-effectiveness [58], [59].

One of the ways to improve cost-effectiveness of prediction models is to predict defects in

finer-grained levels [21]. In this sense, researchers need to more focus on defect prediction on

finer-grained levels such as line-level defect prediction and change classification.

VII. PREPROCESSING FOR DEFECT DATASETS

Preprocessing is a widely used step in machine learning. Since most defect prediction studies

are based on machine learning, there are several studies using preprocessing techniques [27],

[40], [47], [63], [71]. Depending on each study, preprocessing techniques are selectively used

or not used since many studies are conducted by different metrics, models, and subjects.

A. Normalization

Normalization is a common technique to give a same weight for metric values to improve

performance of classification models [19], [17].

Menzies et al. recommended to use the logarithmic filter (log-filter) to normalize metric val-

ues [40] for metrics that have exponential distribution. Other studies using the same experimental

subjects used by Menzies also applied the log-filter [40], [67], [68].

Nam et al. observed that cross-prediction performance varies on different normalization tech-

niques [47]. Nam et al. defined rules for selecting proper normalization techniques such as

min-max normalization, z-score and variations of z-score to improve the performance of cross-

predictions [47].

B. Feature selection and extraction

Shivaji et al. pointed out that the poor performance of defect prediction models is due to

a number of metrics to build the models [63]. In this reason, Shivaji et al. proposed a feature

22

selection technique that can improve change classification [63]. Turhan et al. also applied feature

subset selection using information gain before conducting cross-company defect prediction [67].

Since defect prediction datasets may have the multicollinearity issue, researchers applied

principal component analysis (PCA) to extract new features for prediction models [9], [45],

[75].

C. Noise reduction

Since defect data are usually collected from version control and issue tracking systems au-

tomatically by using tools and algorithms [28], [64], defect data may be bias as in Bird et

al.’s study [5]. To reduce noise, Wu et al. proposed ReLink that automatically recovers the

correct links between commit logs and issue IDs [71]. Kim et al. proposed a noise detection and

elimination algorithm called Closest List Noise Identification (CLNI) [27].

VIII. CROSS-PROJECT DEFECT PREDICTION

Since new software projects do not have enough training data, building a good prediction

model for the new projects is a challenging issue. For example, Zimmermann et al. conducted

622 cross-predictions and found only 3.4% actually worked [76]. To improve cross-prediction

performance, researchers focused on studies based on transfer learning and cross-prediction

feasibility.

A. Transfer Learning

Transfer learning is one of very active research areas in machine learning [51]. Figure 9

explains difference between traditional machine learning and transfer learning. Traditional ma-

chine learning assumes that distribution of training and test data is same. Thus, in case that the

distribution changed, it is required to rebuild the model with newly collected data. However,

collecting new data and labeling them is cost-expensive [51]. In this reason, researchers in

machine learning community have focused on transfer learning where we can transfer knowledge

from a domain with enough training data to another domain with few training data to build a

leaning model as shown in Figure 9 [51].

Software engineering community has been adopted transfer learning concepts and techniques

for cross-project defect prediction. Table VII summarizes the representative works for cross-

project defect prediction using transfer learning.

23Transfer Learning

15

Traditional Machine Learning (ML)

Learning
System

Learning
System

Transfer Learning

Learning
System

Learning
System

Knowledge
 Transfer

Fig. 9: Traditional machine learning vs. transfer learning [52].

TABLE VII: Cross-project defect prediction based on transfer learning techniques.

Transfer learning
Metric

compensation [69]
NN Filter [67] TNB [36] TCA+ [47]

Preprocessing N/A
Feature selection,

Log-filter
Log-filter Normalization

Machine learner C4.5 Naive Bayes TNB Logistic Regression

#Subjects 2 10 10 8

#Predictions 2 10 10 26

Avg. F-measure
0.67

(W:0.79,C:0.58)

0.35

(W:0.37,C:0.26)

0.39

(NN:0.35,C:0.33)

0.46

(W:0.46,C:0.36)

Venue PROMISE’08 ESEJ’09 IST’12 ICSE’13

1) Metric compensation: Watanabe et al. applied metric compensation to transform target data

by using source data [69]. The main idea of metric compensation is to normalize each metric

(feature) value of target data by using the average metric value of corresponding metric of source

data [69]. In detail metric compensation is designed as follows [69]:

24

new vT,i,j =
vT,i,j × avg vS,j

avg vT,j
(6)

, where new vT,i,j is each compensated metric value of i-th instance of j-th metric of target,

vT,i,j is each metric value of i-th instance of j-th metric of target, and avg vS,j and avg vT,j

are average values of j-th metric of source and target respectively.

With two project datasets, Watanabe et al. conducted cross-project predictions and reported

precision and recall in the paper [69]. We computed average f-measure for cross-predictions

with/without metric compensation and within-predictions (W) as shown in Table VII. Average

f-measure (0.67) of cross-predictions with metric compensation outperforms that (0.58) of cross-

predictions without metric compensation but still is worse than that (0.79) of within-predictions.

The major limitation of the work conducted by Watanabe et al. [69] is the weak evaluation

of their approach; only two cross-predictions were conducted and there is no statistical test to

validate their research questions [69].

2) NN filter: Turhan et al. applied nearest neighbour filter (NN filter) to improve performance

of cross-company defect prediction [67]. The basic idea of the NN filter is to collect similar

source instances to target instances to train a prediction model. In other words, if we can build

a prediction model using selected source instances that have similar data characteristics to target

instances, the model may perform better on predicting target instances than the model trained by

using all source instances [67]. The NN filter chooses 10 source instances as nearest neighbours

for each target instance.

To evaluate performance of cross-company defect prediction using the NN filter, Turhan et

al. conducted experiments with ten proprietary datasets from NASA and SOFTLAB [67]. In

addition, they conducted Mann-Whitney U test to validate their experimental results. As we

computed average f-measure from their PD and PF results, the average f-measure (0.35) in

cross-predictions with the NN filter is better than that (0.26) without the NN filter. However,

within-predictions were still the best comparing to cross-predictions.

3) Transfer Naive Bayes: Ma et al. proposed Transfer Naive Bayes (TNB) for cross-company

defect prediction [36]. The basic idea of TNB is to compute new prior probability and conditional

probability of Naive Bayes model by using the weight value of a source instance. The weight

of the source instance is computed according to the similarity between the source instance and

25

target instances.

To compute the instance similarity between a source instance and target instances, min and

max values of each feature of a test dataset is used. In other words, the similarity is computed

by the number of features of a source instance whose feature values are in between min and max

values of a corresponding target feature. Then, the weight value is computed by using Newton’s

Universal Gravitation law [36]. The more weight of a training instance means the more similarity

to test instances. Finally, TNB model is computed with new prior and conditional probabilities

by using these weights for source instances.

As shown in Table VII, TNB (0.39) led to better prediction performance than NN filter (0.35)

in terms of average f-measure. Please note different cross-prediction (CC) results without NN

filter by Turhan et al. [67] and Ma et al. [36]. The reason is that Ma et al. did not apply feature

selection in their experimental setting [36].

The limitation of this study is that TNB is not applicable for other machine leaning algorithms

that do not use prior and conditional probabilities. In addition, Ma et al. did not report within-

prediction results so that we could not conclude cross-prediction using TNB is comparable with

within-prediction [36].

4) TCA+: Nam et al. proposed TCA+ for cross-project defect prediction [47]. TCA+ is an

extended version of transfer component analysis (TCA) that is a state-of-the-art transfer learning

algorithm proposed by Pan et al. [52]. TCA tries to find a common latent feature space where the

distribution of source and target datasets are similar by using projection. Projection is a feature

extraction technique to reduce feature space in machine learning. Principal component analysis

(PCA) is a representative feature extraction approach by projecting instances in lower dimensional

space [51]. While PCA tries to keep original data characteristics on lower dimensional feature

space, TCA tries to find a lower dimensional feature space where source and target data have

similar distribution as well as to keep original data characteristics as PCA does [51]. Figure 10

clearly shows how PCA and TCA results are different. PCA result shown in the center of the

figure explains that distributions between source (red) and target (blue) are still different in the

latent feature space. However, TCA result in the right side of the figure shows that distribution

between source and target is similar in the new latent feature space [51].

Applying TCA for cross-predictions, Nam et al. [47] observed that prediction performance

varies by what normalization approach is applied for preprocessing. In this reason, Nam et

26

PAN et al.: DOMAIN ADAPTATION VIA TRANSFER COMPONENT ANALYSIS 205

−2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

x 2
x 2

x 2
x 2

x 2

Pos. source domain data
Neg. source domain data
Pos. target domain data
Neg. target domain data

(a)

x1

(d)

x1

(g)

x1

(j)

−13 −12 −11 −10 −9 −8 −7

PD
F

x

1-D latent space

(b)
x

−25 −20 −15 −10 −5 0

PD
F

1-D latent space

(c)

−2 −1 0 1 2 3 4 5 6 7 8 9
−2

−1

0

1

2

3

4

5
Pos. source domain data
Neg. source domain data
Pos. target domain data
Neg. target domain data

−150 −100 −50 0 50 100 150

PD
F

x

1-D latent space

(e)

−10 −5 0 5 10 15 20

PD
F

x

1-D latent space

(f)

−15 −10 −5 0 5 10 15
−3

−1

1

3

5

7

9
Pos. source domain data
Neg. source domain data
Pos. target domain data
Neg. target domain data

−300 −200 −100 0 100 200 300

PD
F

x

1-D latent space

(h)

−175 −125 −75 −25 25 75 125

PD
F

x

1-D latent space

(i)

−2 −1 0 1 2 3 4 5 6 7 8

x1

(m)

−2 −1 0 1 2 3 4 5 6 7 8

−2

−1

0

1

2

3

4

5
Pos. source domain data
Neg. source domain data
Pos. target domain data
Neg. target domain data

−5 −2.5 0 2.5 5 7.5 10 12.5 15 17.5 20

PD
F

x

1-D latent space

(k)

−20−17.5−15−12.5−10 −7.5−5 −2.5 0 2.5 5 7.5 10

PD
F

x

1-D latent space

(l)

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Pos. source domain data
Neg. source domain data
Pos. target domain data
Neg. target domain data

−10 −7.5 −5 −2.5 0 2.5 5 7.5 10 12

PD
F

x

1-D latent space

(n)

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10

PD
F

x

1-D latent space

(o)

Fig. 2. Illustrations of the proposed TCA and SSTCA on five synthetic datasets. The leftmost column shows data in the original 2-D input space, while the
other columns show the projected data in the 1-D latent spaces learned by different methods. Accuracy of the 1-NN classifier in the original input/latent space
is shown inside brackets. (a) Dataset 1 (acc: 82%). (b) 1-D projection by SSA (acc: 60%). (c) 1-D projection by TCA (acc: 86%). (d) Dataset 2 (accuracy:
50%). (e) 1-D projection by PCA (acc: 48%). (f) 1-D projection by TCA (acc: 82%). (g) Data set 3 (acc: 69%). (h) 1-D projection by TCA (acc: 56%). (i)
1-D projection by SSTCA (acc: 79%). (j) Dataset 4 (accuracy: 60%). (k) 1-D projection by TCA (acc: 90%). (l) 1-D projection by SSTCA (acc: 68%). (m)
Dataset 5 (acc: 70%). (n) 1-D projection by SSTCA without Laplacian smoothing (acc: 83%). (o) 1-D projection by SSTCA with Laplacian smoothing (acc:
91%).

Fig. 10: Projection result on one dimensional space by PCA (center) and TCA (right) [52].

Figure in the left side shows instances in the original feature space (two dimensional).

al. proposed TCA+ by adding decision rules to select proper normalization options into TCA.

For normalization options, min-max, z-score, and variations of z-score are used in their experi-

ments [47]. As shown in Table VII, cross-prediction result (0.46) in TCA+ show comparable to

within-prediction result (0.46) in terms of average f-measure.

5) Discussion on cross-predictions based on transfer learning: Until now, we compare various

approaches for cross-project defect prediction. The main goal of cross-project defect prediction

is to reuse existing defect datasets to build a prediction model for a new project or a project

lacking in the historical data. However, all approaches discussed above could conduct cross-

predictions across datasets with the same feature space. As shown in Table VII, the number of

subjects used in TCA+ is 8 but the number of predictions are 26. If we consider all possible

cross-prediction combinations, it should be 56 (= 8 × (8 − 1)). However, it could not be done

because of the different feature space of datasets. In TCA+ experiments, the size of feature space

of three datasets is 26 while that of five datasets is 61. Thus, cross-predictions could be possible

within the datasets with the same feature space, ie. 6 cross-predictions (= 3× (3− 1)) and 20

cross-predictions (= 5× (5− 1)). Achieving cross-predictions on datasets with different feature

spaces is an open question to be resolved.

27

B. Cross-prediction Feasibility

There are few studies on cross-project feasibility [76], [22] Zimmermann et al. [76] built

a decision tree to validate cross-project predictability by using project characteristics such as

languages used and number of developers. However, the decision tree was constructed and

validated within the subjects used in their empirical study so that the decision tree could not be

used general purpose [76].

He et al. [22] also constructed the decision tree based on cross prediction results to validate

cross-project feasibility. Their decision tree is built by difference of distributional characteristics

of source and target datasets such as mean, median, variance, skweness and so on [22]. However,

validation of the decision tree is conducted on the best prediction results on different samples

of training sets so that the validation results do not fully support its validity.

IX. APPLICATIONS ON DEFECT PREDICTION

One of major goals of defect prediction models is effective resource allocation for inspecting

and testing software products [40], [59]. However, the case studies using defect prediction models

in industry is few [12], [33]. In this reason, many studies by Rahman et al. [58], [59], [56]

considers cost-effectiveness. A recent case study conducted in Google by Lewis et al. [33]

comparing BugCache and Rahman’s algorithm based on the number of closed bugs [59] found

that developers preferred Rahman’s algorithm. However, developers still did not get benefits

from using defect prediction models [33].

One of recent studies conducted by Rahman [57] showed that defect prediction could be

helpful to prioritize warnings reported by static bug finders such as FindBug.

Anther possible application is that we can apply defect prediction results to prioritize or select

test cases. In regression testing, executing all test suites for regression testing is very costly so

that many prioritization and selection approaches for test cases have been proposed [72]. Since

defect prediction results provide bug-prone software artifacts and their ranks [29], [59], [75], it

might be possible to use the results for test case prioritization and selection.

X. OTHER EMERGING TOPICS

Apart from the representative papers discussed in previous sections, there are interesting and

emerging topics in defect prediction study. One topic is about defect data privacy [53] and the

28

other topic is the comparative study between defect prediction models and static bug finders [57].

A. Defect Data Privacy

Peters et al. proposed MORPH that mutates defect datasets to resolve privacy issue in defect

datasets [53]. To accelerate cross-project defect prediction study, publicly available defect datasets

are necessary. However, software companies are reluctant to share their defect datasets because

of “sensitive attribute value disclosure” [53]. Thus, cross-project defect prediction studies usually

conducted on open source software products or very limited proprietary systems [36], [47], [58],

[67]. Experiments conducted by Zimmermann et al. for cross-project defect prediction are not

reproducible since Microsoft defect datasets are not publicly available [76].

To address this issue, MORPH moves instances in a random distance by still keeping class

decision boundary [53]. In this way, MORPH could privatize original datasets and still achieve

good prediction performance as in models trained by original defect datasets [53].

B. Comparing Defect Prediction Models to Static Bug Finders

In contrast to defect prediction models (DP), static bug finders (SBF) detect bugs by using

“semantic abstractions of source code” [57]. Rahman et al. compared defect prediction techniques

and static bug finders in terms of cost-effectiveness [57]. Rahman et al. found that DP and SBF

could compensate each other since they may find different defects [57]. In addition, SBF warnings

prioritized by DP could lead to better performance than SBF’s native priorities of warnings [57].

This comparative study provided meaningful insights that explains how different research streams

having the same goal can be converged together to achieve the better prediction/detection of

defects.

XI. CHALLENGING ISSUES

Defect prediction studies are still have many challenging issues. Even though there are many

outstanding studies, it is not easy to apply those approaches in practice because of following

reasons:

• Most studies were verified in open source software projects so that current prediction

models may not work for any other software products including commercial software.

However, proprietary datasets are not publicly available because of privacy issue [53].

29

Although Peters et al. proposed MORPH algorithm to increase data privacy, MORPH was

not validated in cross-project defect prediction [53]. Investigating privacy issue in cross-

project defect prediction is required since if we have more available proprietary datasets,

evaluation of prediction models will be more sound.

• Cross prediction is still a very difficult problem in defect prediction in terms of two aspects.

Different feature space: There are many publicly available defect datasets. However, we

cannot use many of datasets for cross prediction since datasets from different domains

have different number of metrics (features). Prediction models based on machine learning

cannot be built on the datasets, which have different feature spaces. Feasibility: Studies

on cross prediction feasibility are not mature yet. Finding general approaches to check the

feasibility in advance will be very helpful for practical use of cross prediction models.

• Since software projects are getting larger, file-level defect prediction may not be enough

in terms of cost-effectiveness. There are still few studies for finer prediction granularity.

Studies on finer-grained defect prediction such as line-level defect prediction and change

classification are required.

• Defect prediction metrics and models proposed until now may not always guarantee

generally good prediction performance. As software repositories evolve, we can extract

new types of development process information, which never used for defect prediction

metrics/models. New metrics and models need to be kept investigating.

REFERENCES

[1] F. Akiyama. An Example of Software System Debugging. In Proceedings of the International Federation of Information

Processing Societies Congress, pages 353–359, 1971.

[2] E. Arisholm, L. C. Briand, and M. Fuglerud. Data mining techniques for building fault-proneness models in telecom

java software. In Proceedings of the The 18th IEEE International Symposium on Software Reliability, ISSRE ’07, pages

215–224, Washington, DC, USA, 2007. IEEE Computer Society.

[3] A. Bacchelli, M. D’Ambros, and M. Lanza. Are popular classes more defect prone? In Proceedings of the

13th International Conference on Fundamental Approaches to Software Engineering, FASE’10, pages 59–73, Berlin,

Heidelberg, 2010. Springer-Verlag.

[4] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented design metrics as quality indicators. IEEE

Trans. Softw. Eng., 22:751–761, October 1996.

[5] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P. Devanbu. Fair and Balanced? Bias in Bug-Fix

Datasets. In ESEC/FSE’09, 2009.

30

[6] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. Don’t touch my code!: Examining the effects of ownership

on software quality. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on

Foundations of Software Engineering, ESEC/FSE ’11, pages 4–14, New York, NY, USA, 2011. ACM.

[7] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE Trans. Softw. Eng., 20:476–493,

June 1994.

[8] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering Metrics and Models. Benjamin-Cummings Publishing

Co., Inc., Redwood City, CA, USA, 1986.

[9] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug prediction approaches. In Mining Software

Repositories (MSR), 2010 7th IEEE Working Conference on, pages 31 –41, May 2010.

[10] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating defect prediction approaches: A benchmark and an extensive

comparison. Empirical Softw. Engg., 17(4-5):531–577, Aug. 2012.

[11] F. B. e Abreu and R. Carapua. Candidate metrics for object-oriented software within a taxonomy framework. Journal of

Systems and Software, 26(1):87 – 96, 1994. Achieving quality in software.

[12] E. Engström, P. Runeson, and G. Wikstrand. An empirical evaluation of regression testing based on fix-cache

recommendations. In Software Testing, Verification and Validation (ICST), 2010 Third International Conference on,

pages 75–78, April 2010.

[13] N. Fenton and M. Neil. A critique of software defect prediction models. Software Engineering, IEEE Transactions on,

25(5):675 –689, sep/oct 1999.

[14] N. Fenton, M. Neil, W. Marsh, P. Hearty, . Radliski, and P. Krause. On the effectiveness of early life cycle defect

prediction with bayesian nets. Empirical Software Engineering, 13(5):499–537, 2008.

[15] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi. An empirical study of just-in-time defect prediction

using cross-project models. In Proceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014,

pages 172–181, New York, NY, USA, 2014. ACM.

[16] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall. Method-level bug prediction. In Proceedings of the ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement, ESEM ’12, pages 171–180, New York,

NY, USA, 2012. ACM.

[17] A. B. A. Graf and S. Borer. Normalization in support vector machines. In in Proc. DAGM 2001 Pattern Recognition,

pages 277–282. SpringerVerlag, 2001.

[18] M. H. Halstead. Elements of Software Science (Operating and Programming Systems Series). Elsevier Science Inc., New

York, NY, USA, 1977.

[19] J. Han, M. Kamber, and J. Pei. Data mining : concepts and techniques. Elsevier/Morgan Kaufmann, Waltham, Mass.,

3rd ed. edition, 2012.

[20] A. E. Hassan. Predicting faults using the complexity of code changes. In Proceedings of the 31st International Conference

on Software Engineering, ICSE ’09, pages 78–88, 2009.

[21] H. Hata, O. Mizuno, and T. Kikuno. Bug prediction based on fine-grained module histories. In Software Engineering

(ICSE), 2012 34th International Conference on, pages 200–210, 2012.

[22] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang. An investigation on the feasibility of cross-project defect prediction.

Automated Software Engineering, 19(2):167–199, 2012.

31

[23] T. Jiang, L. Tan, and S. Kim. Personalized defect prediction. In Automated Software Engineering (ASE), 2013 IEEE/ACM

28th International Conference on, pages 279–289, Nov 2013.

[24] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and A. E. Hassan. Revisiting common bug prediction

findings using effort-aware models. In Proceedings of the 2010 IEEE International Conference on Software Maintenance,

ICSM ’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[25] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi. A large-scale empirical study of

just-in-time quality assurance. IEEE Trans. Softw. Eng., 39(6):757–773, June 2013.

[26] S. Kim, E. J. Whitehead, Jr., and Y. Zhang. Classifying software changes: Clean or buggy? IEEE Trans. Softw. Eng.,

34:181–196, March 2008.

[27] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise in defect prediction. In Proceeding of the 33rd international

conference on Software engineering, ICSE ’11, pages 481–490, New York, NY, USA, 2011. ACM.

[28] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead. Automatic identification of bug-introducing changes. In

Proceedings of the 21st IEEE/ACM International Conference on Automated Software Engineering, ASE ’06, pages 81–

90, Washington, DC, USA, 2006. IEEE Computer Society.

[29] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller. Predicting faults from cached history. In Proceedings of the

29th international conference on Software Engineering, ICSE ’07, pages 489–498, 2007.

[30] M. Kläs, F. Elberzhager, J. Münch, K. Hartjes, and O. von Graevemeyer. Transparent combination of expert and

measurement data for defect prediction: an industrial case study. In Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering - Volume 2, ICSE ’10, pages 119–128, New York, NY, USA, 2010. ACM.

[31] T. Lee, J. Nam, D. Han, S. Kim, and I. P. Hoh. Micro interaction metrics for defect prediction. In SIGSOFT ’11/FSE-19:

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, 2011.

[32] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classification models for software defect prediction:

A proposed framework and novel findings. Software Engineering, IEEE Transactions on, 34(4):485–496, July 2008.

[33] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. W. Jr. Does bug prediction support human developers? findings

from a google case study. In International Conference on Software Engineering (ICSE), 2013.

[34] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou. Sample-based software defect prediction with active and semi-supervised

learning. Automated Software Engineering, 19(2):201–230, 2012.

[35] H. Lu and B. Cukic. An adaptive approach with active learning in software fault prediction. In Proceedings of the 8th

International Conference on Predictive Models in Software Engineering, PROMISE ’12, pages 79–88, New York, NY,

USA, 2012. ACM.

[36] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer learning for cross-company software defect prediction. Inf. Softw.

Technol., 54(3):248–256, Mar. 2012.

[37] A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the conceptual cohesion of classes for fault prediction in object-oriented

systems. IEEE Trans. Softw., 34(2):287 –300, 2008.

[38] T. McCabe. A complexity measure. Software Engineering, IEEE Transactions on, SE-2(4):308–320, Dec 1976.

[39] A. Meneely, L. Williams, W. Snipes, and J. Osborne. Predicting failures with developer networks and social network

analysis. In SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of

software engineering, pages 13–23, 2008.

32

[40] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn defect predictors. IEEE Trans. Softw.

Eng., 33:2–13, January 2007.

[41] A. Mockus and L. G. Votta. Identifying reasons for software changes using historic databases. In Proceedings of the

International Conference on Software Maintenance, 2000.

[42] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of change metrics and static code attributes

for defect prediction. In Proceedings of the 30th international conference on Software engineering, ICSE ’08, pages

181–190, 2008.

[43] J. C. Munson and T. M. Khoshgoftaar. The detection of fault-prone programs. IEEE Trans. Softw. Eng., 18(5):423–433,

May 1992.

[44] N. Nagappan and T. Ball. Static analysis tools as early indicators of pre-release defect density. In Proceedings of the

27th international conference on Software engineering, ICSE ’05, pages 580–586, 2005.

[45] N. Nagappan and T. Ball. Use of relative code churn measures to predict system defect density. In Proceedings of the

27th international conference on Software engineering, ICSE ’05, pages 284–292, 2005.

[46] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures. In Proceedings of the 28th international

conference on Software engineering, ICSE ’06, pages 452–461, 2006.

[47] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In Proceedings of the 2013 International Conference on Software

Engineering, ICSE ’13, pages 382–391, Piscataway, NJ, USA, 2013. IEEE Press.

[48] N. Ohlsson and H. Alberg. Predicting fault-prone software modules in telephone switches. IEEE Trans. Softw., 22(12):886

–894, Dec. 1996.

[49] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location and number of faults in large software systems.

IEEE Trans. Softw. Eng., 31:340–355, April 2005.

[50] G. Pai and J. Bechta Dugan. Empirical analysis of software fault content and fault proneness using bayesian methods.

Software Engineering, IEEE Transactions on, 33(10):675–686, Oct 2007.

[51] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering,

22(10):1345–1359, October 2010.

[52] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Trans. on Knowl. and Data Eng., 22:1345–1359, October

2010.

[53] F. Peters and T. Menzies. Privacy and utility for defect prediction: Experiments with morph. In Proceedings of the 34th

International Conference on Software Engineering, ICSE ’12, pages 189–199, Piscataway, NJ, USA, 2012. IEEE Press.

[54] M. Pinzger, N. Nagappan, and B. Murphy. Can developer-module networks predict failures? In Proceedings of the 16th

ACM SIGSOFT International Symposium on Foundations of software engineering, SIGSOFT ’08/FSE-16, pages 2–12,

New York, NY, USA, 2008. ACM.

[55] F. Rahman and P. Devanbu. Ownership, experience and defects: A fine-grained study of authorship. In Proceedings of the

33rd International Conference on Software Engineering, ICSE ’11, pages 491–500, New York, NY, USA, 2011. ACM.

[56] F. Rahman and P. Devanbu. How, and why, process metrics are better. In Proceedings of the 2013 International Conference

on Software Engineering, ICSE ’13, pages 432–441, Piscataway, NJ, USA, 2013. IEEE Press.

[57] F. Rahman and P. Devanbu. Comparing static bug finders and statistical prediction. In Proceedings of the 2014 International

Conference on Software Engineering, ICSE ’14, 2014.

33

[58] F. Rahman, D. Posnett, and P. Devanbu. Recalling the ”imprecision” of cross-project defect prediction. In Proceedings of

the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, FSE ’12, pages 61:1–61:11,

New York, NY, USA, 2012. ACM.

[59] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu. Bugcache for inspections: Hit or miss? In Proceedings of the

19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, ESEC/FSE

’11, pages 322–331, New York, NY, USA, 2011. ACM.

[60] V. Y. Shen, T.-J. Yu, S. M. Thebaut, and L. R. Paulsen. Identifying error-prone software an empirical study. IEEE Trans.

Softw. Eng., 11(4):317–324, Apr. 1985.

[61] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan. High-impact defects: a study of breakage and surprise

defects. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of

software engineering, ESEC/FSE ’11, pages 300–310, New York, NY, USA, 2011. ACM.

[62] Y. Shin, A. Meneely, L. Williams, and J. Osborne. Evaluating complexity, code churn, and developer activity metrics as

indicators of software vulnerabilities. Software Engineering, IEEE Transactions on, 37(6):772 –787, nov.-dec. 2011.

[63] S. Shivaji, E. Whitehead, R. Akella, and S. Kim. Reducing features to improve code change-based bug prediction. Software

Engineering, IEEE Transactions on, 39(4):552–569, 2013.

[64] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In Proceedings of the 2005 international

workshop on Mining software repositories, MSR ’05, pages 1–5, 2005.

[65] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. A general software defect-proneness prediction framework. Software

Engineering, IEEE Transactions on, 37(3):356–370, May 2011.

[66] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan. Predicting bugs using antipatterns. In ICSM, pages

270–279, 2013.

[67] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano. On the relative value of cross-company and within-company data

for defect prediction. Empirical Softw. Eng., 14:540–578, October 2009.

[68] B. Turhan, A. T. Msrl, and A. Bener. Empirical evaluation of the effects of mixed project data on learning defect predictors.

Information and Software Technology, 55(6):1101 – 1118, 2013.

[69] S. Watanabe, H. Kaiya, and K. Kaijiri. Adapting a fault prediction model to allow inter languagereuse. In Proceedings of

the 4th International Workshop on Predictor Models in Software Engineering, PROMISE ’08, pages 19–24, New York,

NY, USA, 2008. ACM.

[70] E. Weyuker, T. Ostrand, and R. Bell. Comparing the effectiveness of several modeling methods for fault prediction.

Empirical Software Engineering, 15(3):277–295, 2010.

[71] R. Wu, H. Zhang, S. Kim, and S. Cheung. Relink: Recovering links between bugs and changes. In SIGSOFT ’11/FSE-19:

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, 2011.

[72] S. Yoo and M. Harman. Regression testing minimization, selection and prioritization: A survey. Softw. Test. Verif. Reliab.,

22(2):67–120, Mar. 2012.

[73] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou. Towards building a universal defect prediction model. In Proceedings of

the 11th Working Conference on Mining Software Repositories, MSR 2014, pages 182–191, New York, NY, USA, 2014.

ACM.

34

[74] H. Zhang and R. Wu. Sampling program quality. In Software Maintenance (ICSM), 2010 IEEE International Conference

on, pages 1–10, Sept 2010.

[75] T. Zimmermann and N. Nagappan. Predicting defects using network analysis on dependency graphs. In Proceedings of

the 30th international conference on Software engineering, ICSE ’08, pages 531–540, 2008.

[76] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project defect prediction: a large scale experiment

on data vs. domain vs. process. In Proceedings of the the 7th joint meeting of the European software engineering conference

and the ACM SIGSOFT symposium on The foundations of software engineering, ESEC/FSE ’09, pages 91–100, New York,

NY, USA, 2009. ACM.

