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4 Abstract—Many recent studies have documented the success of cross-project defect prediction (CPDP) to predict defects for new

5 projects lacking in defect data by using prediction models built by other projects. However, most studies share the same limitations: it

6 requires homogeneous data; i.e., different projects must describe themselves using the samemetrics. This paper presents methods for

7 heterogeneous defect prediction (HDP) that matches up different metrics in different projects. Metric matching for HDP requires a

8 “large enough” sample of distributions in the source and target projects—which raises the question on how large is “large enough” for

9 effective heterogeneous defect prediction. This paper shows that empirically and theoretically, “large enough” may be very small

10 indeed. For example, using a mathematical model of defect prediction, we identify categories of data sets were as few as 50 instances

11 are enough to build a defect prediction model. Our conclusion for this work is that, even when projects use different metric sets, it is

12 possible to quickly transfer lessons learned about defect prediction.

13 Index Terms—Defect prediction, quality assurance, heterogeneous metrics, transfer learning

Ç

14 1 INTRODUCTION

15 MACHINE learners can be used to automatically gener-
16 ate software quality models from project data [1], [2].
17 Such data comprises various software metrics and labels:

18 � Software metrics are the terms used to describe software
19 projects. Commonly used software metrics for defect
20 prediction are complexity metrics (such as lines of
21 code, Halsteadmetrics, McCabe’s cyclometic complex-
22 ity, andCKmetrics) and processmetrics [3], [4], [5], [6].
23 � When learning defect models, labels indicate whether
24 the source code is buggy or clean for binary classifi-
25 cation [7], [8].
26 Most proposed defect prediction models have been evalu-
27 ated on “within-project” defect prediction (WPDP) set-
28 tings [1], [2], [7]. As shown in Fig. 1a, in WPDP, each
29 instance representing a source code file or function consists
30 of software metric values and is labeled as buggy or clean.
31 In the WPDP setting, a prediction model is trained using
32 the labeled instances in Project A and predict unlabeled (‘?’)
33 instances in the same project as buggy or clean.

34Sometimes, software engineers need more than within-
35project defect prediction. The 21st century is the era of the
36“mash up”, where new systems are built by combining
37large sections of old code in some new and novel manner.
38Software engineers working on such mash-ups often face
39the problem of working with large code bases built by other
40developers that are, in some sense “alien”; i.e., code has
41been written for other purposes, by other people, for differ-
42ent organizations. When performing quality assurance on
43such code, developers seek some way to “transfer” what-
44ever expertise is available and apply it to the “alien” code.
45Specifically, for this paper, we assume that

46� Developers are experts on their local code base;
47� Developers have applied that expertise to log what
48parts of their code are particularly defect-prone;
49� Developers now want to apply that defect log to
50build defect predictors for the “alien” code.
51Prior papers have explored transferring data about code
52quality from one project across to another. For example,
53researchers have proposed “cross-project” defect prediction
54(CPDP) [8], [9], [10], [11], [12], [13]. CPDP approaches predict
55defects even for new projects lacking in historical data by
56reusing information from other projects. As shown in Fig. 1b,
57in CPDP, a prediction model is trained by labeled instances
58in Project A (source) and predicts defects in Project B (target).
59Most CPDP approaches have a serious limitation: typical
60CPDP requires that all projects collect exactly the same met-
61rics (as shown in Fig. 1b). Developers deal with this limita-
62tion by collecting the same metric sets. However, there are
63several situations where collecting the same metric sets can
64be challenging. Language-dependent metrics are difficult to
65collect for projects written in different languages. Metrics
66collected by a commercial metric tool with a limited license
67may generate additional cost for project teams when collect-
68ing metrics for new projects that do not obtain the tool
69license. Because of these situations, publicly available defect
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70 datasets that are widely used in defect prediction literature
71 usually have heterogeneousmetric sets:

72 � In heterogeneous data, different metrics are collected
73 in different projects.
74 � For example, many NASA datasets in the PROMISE
75 repository have 37 metrics but AEEEM datasets used
76 by D’Ambros et al. have 61 metrics [1], [14]. The only
77 common metric between NASA and AEEEM data-
78 sets is lines of code (LOC). CPDP between NASA and
79 AEEEM datasets with all metric sets is not feasible
80 since they have completely different metrics [12].
81 SomeCPDP studies use only commonmetricswhen source
82 and target datasets have heterogeneous metric sets [10], [12].
83 For example, Turhan et al. use the only 17 common metrics
84 between the NASA and SOFTLAB datasets that have hetero-
85 geneous metric sets [12]. This approach is hardly a general
86 solution since finding other projects with multiple common
87 metrics can be challenging. As mentioned, there is only one
88 commonmetric betweenNASAandAEEEM.Also, only using
89 common metrics may degrade the performance of CPDP
90 models. That is because some informative metrics necessary
91 for building a good prediction model may not be in the com-
92 monmetrics across datasets. For example, the CPDP approach
93 proposed by Turhan et al. did not outperformWPDP in terms
94 of the average f-measure (0.35 versus 0.39) [12].
95 In this paper, we propose the heterogeneous defect pre-
96 diction (HDP) approach to predict defects across projects
97 even with heterogeneous metric sets. If the proposed
98 approach is feasible as in Fig. 1c, we could reuse any

99existing defect datasets to build a prediction model. For
100example, many PROMISE defect datasets even if they have
101heterogeneous metric sets [14] could be used as training
102datasets to predict defects in any project. Thus, addressing
103the issue of the heterogeneous metric sets also can benefit
104developers who want to build a prediction model with
105more defects from publicly available defect datasets even
106whose source code is not available.
107The key idea of our HDP approach is to transfer knowl-
108edge, i.e., the typical defect-proneness tendency of software
109metrics, from a source dataset to predict defects in a target
110dataset by matching metrics that have similar distributions
111between source and target datasets [1], [2], [6], [15], [16]. In
112addition, we also used metric selection to remove less infor-
113mative metrics of a source dataset for a prediction model
114before metric matching.
115In addition to proposing HDP, it is important to identify
116the lower bounds of the sizes of the source and target data-
117sets for effective transfer learning since HDP compares dis-
118tributions between source and target datasets. If HDP
119requires many source or target instances to compare there
120distributions, HDP may not be effective and efficient to
121build a prediction model. We address this limit experimen-
122tally as well as theoretically in this paper.

1231.1 Research Questions

124To systematically evaluate HDP models, we set two
125research questions.

126� RQ1: Is heterogeneous defect prediction comparable to
127WPDP, existing CPDP approaches for heterogeneous
128metric sets, and unsupervised defect prediction?
129� RQ2: What are the lower bounds of the size of source
130and target datasets for effective HDP?

1311.2 Contributions

132Our experimental results on RQ1 (in Section 6) show that
133HDP models are feasible and their prediction performance
134is promising. About 47.2-83.1 percent of HDP predictions
135are better or comparable to predictions in baseline
136approaches with statistical significance.
137A natural response to the RQ1 results is to ask RQ2; i.e.,
138how early is such transfer feasible? Section 7 shows some
139curious empirical results that show a few hundred exam-
140ples are enough—this result is curious since we would have
141thought that heterogeneous transfer would complicate
142move information across projects; thus increasing the quan-
143tity of data needed for effective transfer.
144The results of Section 7 are so curious that is natural to
145ask: are they just a quirk of our data, or do they represent a
146more general case? To answer this question and to assess
147the external validity of the results in Section 7, Section 8 of
148this paper builds and explores a mathematical model of
149defect prediction. That analysis concludes that Section 7 is
150actually representative of the general case; i.e., transfer
151should be possible after a mere few hundred examples.
152Our contributions are summarized as follows:

153� Proposing the heterogeneous defect prediction
154models.
155� Conducting extensive and large-scale experiments to
156evaluate the heterogeneous defect predictionmodels.

Fig. 1. Various defect prediction scenarios.
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157 � Empirically validating the lower bounds of the size
158 of source and target datasets for effective heteroge-
159 neous defect prediction.
160 � Theoretically demonstrating that the above empirical
161 results are actually the general and expected results.

162 1.3 Extensions from Prior Publication

163 We extend the previous conference paper of the same
164 name [17] in the followingways. First, wemotivate this study
165 in the view of transfer learning in software engineering (SE).
166 Thus, we discuss how transfer learning can be helpful to
167 understand the nature of generality in SE and why we focus
168 on defect prediction in terms of transfer learning (Section 2).
169 Second, we address new research question about the effective
170 sizes of source and target datasets when conducting HDP. In
171 Sections 7 and 8, we show experimental and theoretical vali-
172 dation to investigate the effective sizes of project datasets for
173 HDP. Third, we discuss more related work with recent stud-
174 ies. In Section 3.2, we discuss metric sets used in CPDP and
175 how our HDP is similar to and different from recent studies
176 about CPDPusing heterogeneousmetric sets.

177 2 MOTIVATION

178 2.1 Why Explore Transfer Learning?

179 One reason to explore transfer learning is to study the nature
180 of generality in SE. Professional societies assume such gener-
181 alities exist when they offer lists of supposedly general “best
182 practices”:

183 � For example, the IEEE 1012 standard for software
184 verification [18] proposes numerous methods for
185 assessing software quality;
186 � Endres and Rombach catalog dozens of lessons of
187 software engineering [19] such as McCabe’s Law
188 (functions with a “cyclomatic complexity” greater
189 than ten are more error prone);
190 � Further, many other widely-cited researchers do the
191 same such as Jones [20] and Glass [21] who list (for
192 exmple) Brooks’ Law (adding programmers to a late
193 project makes it later).
194 � More generally, Budgen and Kitchenham seek to
195 reorganize SE research using general conclusions
196 drawn from a larger number of studies [22], [23].
197 Given the constant pace of change within SE, can we trust
198 those supposed generalities? Numerous local learning results
199 show that we should mistrust general conclusions (made
200 over a wide population of projects) since they may not hold
201 for projects [24], [25]. Posnett et al. [26] discuss ecological infer-
202 ence in software engineering, which is the concept that what
203 holds for the entire population also holds for each individual.
204 They learn models at different levels of aggregation (mod-
205 ules, packages, and files) and show that models working at
206 one level of aggregation can be sub-optimal at others. For
207 example, Yang et al. [27], Bettenburg et al. [25], and Menzies
208 et al. [24] all explore the generation of models using all data
209 versus local samples that are more specific to particular test
210 cases. These papers report that better models (sometimes
211 with much lower variance in their predictions) are generated
212 from local information. These results have anunsettling effect
213 on anyone struggling to propose policies for an organization.
214 If all prior conclusions can change for the new project, or
215 some small part of a project, how can anymanager ever hope

216to propose and defend IT policies (e.g., when should some
217module be inspected, when should it be refactored, where to
218focus expensive testing procedures, etc.)?
219If we cannot generalize to all projects and all parts of cur-
220rent projects, perhaps a more achievable goal is to stabilize
221the pace of conclusion change. While it may be a fool’s
222errand and wait for eternal and global SE conclusions, one
223possible approach is for organizations to declare N prior
224projects as reference projects, from which lessons learned will
225be transferred to new projects. In practice, using such refer-
226ence sets requires three processes:

2271) Finding the reference sets (this paper shows that
228finding them may not require extensive and pro-
229tracted data collection, at least for defect prediction).
2302) Recognizing when to update the reference set. In
231practice, this could be as simple as noting when pre-
232dictions start failing for new projects—at which
233time, we would loop to the point 1).
2343) Transferring lessons from the reference set to new
235projects.
236In the case where all the datasets use the same metrics,
237this is a relatively simple task. Krishna et al. [28] have found
238such reference projects just by training of a project X then
239testing on a project Y (and the reference set are the project
240Xs with highest scores). Once found, these reference sets
241can generate policies of an organization that are stable just
242as long as the reference set is not updated.
243In this paper, we do not address the pace of change in the
244reference set (that is left for future work). Rather, we focus
245on the point 3): transferring lessons from the reference set to
246new projects in the case of heterogeneous data sets. To sup-
247port this third point, we need to resolve the problem that
248this paper addresses, i.e., data expressed in different termi-
249nology cannot transfer till there is enough data to match old
250projects to new projects.

2512.2 Why Explore Defect Prediction?

252There are many lessons we might try to transfer between
253projects about staffing policies, testing methods, language
254choices, etc. While all those matters are important and are
255worthy of research, this section discusses why we focus on
256defect prediction.
257Human programmers are clever, but flawed. Coding
258adds functionality, but also defects. Hence, software some-
259times crashes (perhaps at the most awkward or dangerous
260moment) or delivers the wrong functionality. For a very
261long list of software-related errors, see Peter Neumann’s
262“Risk Digest” at http://catless.ncl.ac.uk/Risks.
263Since programming inherently introduces defects into
264programs, it is important to test them before they’re used.
265Testing is expensive. Software assessment budgets are finite
266while assessment effectiveness increases exponentially with
267assessment effort. For example, for black-box testing meth-
268ods, a linear increase in the confidence C of finding defects
269can take exponentially more effort.1 Exponential costs

1. A randomly selected input to a program will find a fault with
probability p. After N random black-box tests, the chances of the inputs
not revealing any fault is ð1� pÞN . Hence, the chances C of seeing the
fault is 1� ð1� pÞN which can be rearranged to NðC; pÞ ¼ logð1�
CÞ=logð1� pÞ. For example, Nð0:90; 10�3Þ ¼ 2301 but Nð0:98; 10�3Þ ¼
3901; i.e., nearly double the number of tests.
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270 quickly exhaust finite resources so standard practice is to
271 apply the best available methods on code sections that seem
272 most critical. But any method that focuses on parts of the
273 code can blind us to defects in other areas. Some lightweight
274 sampling policy should be used to explore the rest of the sys-
275 tem. This sampling policy will always be incomplete. Nev-
276 ertheless, it is the only option when resources prevent a
277 complete assessment of everything.
278 One such lightweight sampling policy is defect predic-
279 tors learned from software metrics such as static code attrib-
280 utes. For example, given static code descriptors for each
281 module, plus a count of the number of issues raised during
282 inspect (or at runtime), data miners can learn where the
283 probability of software defects is highest.
284 The rest of this section argues that such defect predictors
285 are easy to use, widely-used, and useful to use.
286 Easy to Use: Various software metrics such as static code
287 attributes and process metrics can be automatically col-
288 lected, even for very large systems, from software reposito-
289 ries [3], [4], [5], [6], [29]. Other methods, like manual code
290 reviews, are far slower and far more labor-intensive. For
291 example, depending on the review methods, 8 to 20 LOC/
292 minute can be inspected and this effort repeats for all mem-
293 bers of the review team, which can be as large as four or six
294 people [30].
295 Widely Used: Researchers and industrial practitioners use
296 the software metrics to guide software quality predictions.
297 Defect prediction models have been reported at large indus-
298 trial companies such as Google [31], Microsoft [32],
299 AT&T [33], and Samsung [34]. Verification and validation
300 (V&V) textbooks [35] advise using the software metrics to
301 decide which modules are worth manual inspections.
302 Useful: Defect predictors often find the location of
303 70 percent (ormore) of the defects in code [36]. Defect predic-
304 tors have some level of generality: predictors learned at
305 NASA [36] have also been found useful elsewhere (e.g., in
306 Turkey [37], [38]). The success of this method in predictors in
307 finding bugs is markedly higher than other currently-used
308 industrial methods such as manual code reviews. For exam-
309 ple, a panel at IEEE Metrics 2002 [39] concluded that manual
310 software reviews can find �60 percent of defects. In another
311 work, Raffo documents the typical defect detection capabil-
312 ity of industrial review methods: around 50 percent for full
313 Fagan inspections [40] to 21 percent for less-structured
314 inspections. In some sense, defect prediction might not be
315 necessary for small software projects. However, software
316 projects seldom grow by small fractions in practice. For
317 example, a project team may suddenly merge a large branch
318 into a master branch in a version control system or add a
319 large third-part library. In addition, a small project could be
320 just one of many other projects in a software company. In
321 this case, the small project also should be considered for lim-
322 ited resource allocation in terms of software quality control
323 by the company. For this reason, defect prediction could be
324 useful even for the small software projects in practice.
325 Not only do defect predictors perform well compared to
326 manual methods, they also are competitive with certain
327 automatic methods. A recent study at ICSE’14, Rahman
328 et al. [41] compared (a) static code analysis tools FindBugs,
329 Jlint, and Pmd and (b) defect predictors (which they called
330 “statistical defect prediction”) built using logistic

331regression. They found no significant differences in the
332cost-effectiveness of these approaches. Given this equiva-
333lence, it is significant to note that defect prediction can be
334quickly adapted to new languages by building lightweight
335parsers to extract high-level software metrics. The same is
336not true for static code analyzers—these need extensive
337modification before they can be used on new languages.
338Having offered general high-level notes on defect predic-
339tion, the next section describes in detail the related work on
340this topic.

3413 RELATED WORK

3423.1 Related Work on Transfer Learning

343In the machine learning literature, the 2010 article by Pan
344and Yang [42] is the definitive definition of transfer
345learning.
346Pan and Yang state that transfer learning is defined over
347a domain D, which is composed of pairs of examples X and
348a probability distribution about those examples P ðXÞ; i.e.,
349D ¼ fX;P ðXÞg. This P distribution represents what class
350values to expect, given theX values.
351The transfer learning task T is to learn a function f that
352predicts labels Y ; i.e., T ¼ fY; fg. Given a new example x,
353the intent is that the function can produce a correct label
354y 2 Y ; i.e., y ¼ fðxÞ and x 2 X. According to Pan and Yang,
355synonyms for transfer learning include, learning to learn,
356life-long learning, knowledge transfer, inductive transfer,
357multitask learning, knowledge consolidation, context-
358sensitive learning, knowledge-based inductive bias, metal-
359earning, and incremental/cumulative learning.
360Pan and Yang [42] define four types of transfer learning:

361� When moving from some source domain to the tar-
362get domain, instance-transfer methods provide exam-
363ple data for model building in the target;
364� Feature-representation transfer synthesizes example
365data for model building;
366� Parameter transfer provides parameter terms for exist-
367ing models;
368� and Relational-transfer provides mappings between
369term parameters.
370From a business perspective, we can offer the following
371examples of how to use these four kinds of transfer. Take
372the case where a company is moving from Java-based desk-
373top application development to Python-based web applica-
374tion development. The project manager for the first Python
375webapp wants to build a model that helps her predict which
376classes have the most defects so that she can focus on sys-
377tem testing:

378� Instance-transfer tells her which Java project data are
379relevant for building her Python defect prediction
380model.
381� Feature-representation transfer will create synthesized
382Python project data based on analysis of the Java
383project data that she can use to build her defect pre-
384diction model.
385� If defect prediction models previously existed for the
386Java projects, parameter transfer will tell her how to
387weight the terms in old models to make those model
388are relevant for the Python projects.
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389 � Finally, relational-transfer will tell her how to trans-
390 late some JAVA-specific concepts (such as metrics
391 collected from JAVA interfaces classes) into synony-
392 mous terms for Python (note that this last kind of
393 transfer is very difficult and, in the case of SE, the
394 least explored).
395 In the SE literature, methods for CPDP using same/com-
396 mon metrics sets are examples of instance transfer. As to the
397 other kinds of transfer, there is some work in the effort esti-
398 mation literature of using genetic algorithms to automati-
399 cally learn weights for different parameters [43]. Such work
400 is an example of parameter transfer. To the best of our knowl-
401 edge, there is no work on feature-representation transfer,
402 but research into automatically learning APIs between pro-
403 grams [44] might be considered a close analog.
404 In the survey of Pan and Yang [42], most transfer learn-
405 ing algorithms in these four types of transfer learning
406 assume the same feature space. In other words, the sur-
407 veyed transfer learning studies in [42] focused on different
408 distributions between source and target ‘domains or tasks’
409 under the assumption that the feature spaces between
410 source and target domains are same. However, Pan and
411 Yang discussed the need for transfer learning between
412 source and target that have different feature spaces and
413 referred to this kind of transfer learning as heterogeneous
414 transfer learning [42].
415 A recent survey of transfer learning by Weiss et al. pub-
416 lished in 2016 [45] categorizes transfer learning approaches
417 in homogeneous or heterogeneous transfer learning based
418 on the same or different feature spaces respectively. Weiss
419 et al. put the four types of transfer learning by Pan and
420 Yang into homogeneous transfer learning [45]. For heteroge-
421 neous transfer learning, Weiss et al. divide related studies
422 into two sub-categories: symmetric transformation and asym-
423 metric transformation [45]. Symmetric transformation finds a
424 common latent space whether both source and target can
425 have similar distributions while Asymmetric transforma-
426 tion aligns source and target features to form the same fea-
427 ture spaces [45].
428 By the definition of Weiss et al., HDP is an example of
429 heterogeneous transfer learning based on asymmetric trans-
430 formation to solve issues of CPDP using heterogeneous met-
431 ric sets. We discuss the related work about CPDP based on
432 transfer learning concept in the following section.

433 3.2 Related Work on Defect Prediction

434 Recall from the above that we distinguish cross-project
435 defect prediction (CPDP) from within-project defect predic-
436 tion (WPDP). The CPDP approaches have been studied by
437 many researchers of late [8], [10], [11], [12], [13], [46], [47],
438 [48], [49], [50]. Since the performance of CPDP is usually
439 very poor [13], researchers have proposed various techni-
440 ques to improve CPDP [8], [10], [12], [46], [47], [48], [49],
441 [51]. In this section, we discuss CPDP studies in terms of
442 metric sets in defect prediction datasets.

443 3.2.1 CPDP Using Same/Common Metric Sets

444 Watanabe et al. proposed the metric compensation approach
445 for CPDP [51]. The metric compensation transforms a target
446 dataset similar to a source dataset by using the average

447metric values [51]. To evaluate the performance of the metric
448compensation, Watanabe et al. collected two defect datasets
449with the samemetric set (8 object-oriented metrics) from two
450software projects and then conducted CPDP [51].
451Rahman et al. evaluated the CPDP performance in terms
452of cost-effectiveness and confirmed that the prediction per-
453formance of CPDP is comparable to WPDP [11]. For the
454empirical study, Rahman et al. collected 9 datasets with the
455same process metric set [11].
456Fukushima et al. conducted an empirical study of just-in-
457time defect prediction in the CPDP setting [52]. They used
45816 datasets with the same metric set [52]. The 11 datasets
459were provided by Kamei et al. but 5 projects were newly
460collected with the same metric set used in the 11 data-
461sets [52], [53].
462However, collecting datasets with the same metric set
463might limit CPDP. For example, if existing defect datasets
464contain object-oriented metrics such as CK metrics [3], col-
465lecting the same object-oriented metrics is impossible for
466projects that are written in non-object-oriented languages.
467Turhan et al. proposed the nearest-neighbour (NN) filter
468to improve the performance of CPDP [12]. The basic idea of
469the NN filter is that prediction models are built by source
470instances that are nearest-neighbours of target instances [12].
471To conduct CPDP, Turhan et al. used 10 NASA and SOFT-
472LAB datasets in the PROMISE repository [12], [14].
473Ma et al. proposed Transfer Naive Bayes (TNB) [10]. The
474TNB builds a prediction model by weighting source instan-
475ces similar to target instances [10]. Using the same datasets
476used by Turhan et al., Ma et al. evaluated the TNB models
477for CPDP [10], [12].
478Since the datasets used in the empirical studies of Turhan
479et al. and Ma et al. have heterogeneous metric sets, they con-
480ducted CPDP using the common metrics [10], [12]. There is
481another CPDP study with the top-K common metric sub-
482set [54]. However, as explained in Section 1, CPDP using
483common metrics is worse than WPDP [12], [54].
484Nam et al. adapted a state-of-the-art transfer learning
485technique called Transfer Component Analysis (TCA) and
486proposed TCA+ [8]. They used 8 datasets in two groups,
487ReLink and AEEEM, with 26 and 61 metrics respectively [8].
488However, Nam et al. could not conduct CPDP between
489ReLink and AEEEM because they have heterogeneous met-
490ric sets. Since the project pool with the same metric set is
491very limited, conducting CPDP using a project group with
492the same metric set can be limited as well. For example, at
493most 18 percent of defect datasets in the PROMISE reposi-
494tory have the same metric set [14]. In other words, we can-
495not directly conduct CPDP for the 18 percent of the defect
496datasets by using the remaining (82 percent) datasets in the
497PROMISE repository [14].
498There are other CPDP studies using datasets with the
499same metric sets or using common metric sets [14], [24], [46],
500[47], [48], [49], [50]. Menzies et al. proposed a local prediction
501model based on clustering [24]. They used seven defect data-
502sets with 20 object-oriented metrics from the PROMISE
503repository [14], [24]. Canfora et al., Panichella et al., and
504Zhang et al. used 10 Java projects only with the same metric
505set from the PROMISE repository [14], [46], [47], [50]. Ryu
506et al. proposed the value-cognitive boosting and transfer
507cost-sensitive boosting approaches for CPDP [48], [49].
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508 Ryu et al. used common metrics in NASA and SOFTLAB
509 datasets [48] or Jureczko datasets with the same metric set
510 from the PROMISE repository [49]. These recent studies for
511 CPDP did not discuss about the heterogeneity of metrics
512 across project datasets.
513 Zhang et al. proposed the universal model for CPDP [55].
514 The universal model is built using 1,398 projects from Sour-
515 ceForge and Google code and leads to comparable predic-
516 tion results to WPDP in their experimental setting [55].
517 However, the universal defect prediction model may be
518 difficult to apply for the projects with heterogeneous metric
519 sets since the universal model uses 26 metrics including
520 code metrics, object-oriented metrics, and process metrics.
521 In other words, the model can only be applicable for target
522 datasets with the same 26 metrics. In the case where the tar-
523 get project has not been developed in object-oriented lan-
524 guages, a universal model built using object-oriented
525 metrics cannot be used for the target dataset.

526 3.2.2 CPDP Using Heterogeneous Metric Sets

527 He et al. [56] addressed the limitations due to heteroge-
528 neous metric sets in CPDP studies listed above. Their
529 approach, CPDP-IFS, used distribution characteristic vec-
530 tors of an instance as metrics. The prediction performance
531 of their best approach is comparable to or helpful in
532 improving regular CPDP models [56].
533 However, the approach by He et al. is not compared with
534 WPDP [56]. Although their best approach is helpful to
535 improve regular CPDP models, the evaluation might be
536 weak since the prediction performance of a regular CPDP is
537 usually very poor [13]. In addition, He et al. conducted
538 experiments on only 11 projects in 3 dataset groups [56].
539 Jing et al. proposed heterogeneous cross-company defect
540 prediction based on the extended canonical correlation anal-
541 ysis (CCA+) [57] to address the limitations of heterogeneous
542 metric sets. Their approach adds dummy metrics with zero
543 values for non-existing metrics in source or target datasets
544 and then transforms both source and target datasets to

545make their distributions similar. CCA+ was evaluated on 14
546projects in four dataset groups.
547We propose HDP to address the above limitations caused
548by projects with heterogeneous metric sets. Contrary to the
549study by He et al. [56], we compare HDP to WPDP, and
550HDP achieved better or comparable prediction performance
551to WPDP in about 71 percent of predictions. Comparing to
552the experiments for CCA+ [57] with 14 projects, we con-
553ducted more extensive experiments with 34 projects in 5
554dataset groups. In addition, CCA+ transforms original
555source and target datasets so that it is difficult to directly
556explain the meaning of metric values generated by CCA
557+ [57]. However, HDP keeps the original metrics and builds
558models with the small subset of selected and matched met-
559rics between source and target datasets in that it can make
560prediction models simpler and easier to explain [17], [58]. In
561Section 4, we describe our approach in detail.

5624 APPROACH

563Fig. 2 shows the overview of HDP based on metric selection
564and metric matching. In the figure, we have two datasets,
565Source and Target, with heterogeneous metric sets. Each
566row and column of a dataset represents an instance and a
567metric, respectively, and the last column represents instance
568labels. As shown in the figure, the metric sets in the source
569and target datasets are not identical (X1 to X4 and Y1 to Y7

570respectively).
571When given source and target datasets with heteroge-
572neous metric sets, for metric selection we first apply a fea-
573ture selection technique to the source. Feature selection is a
574common approach used in machine learning for selecting a
575subset of features by removing redundant and irrelevant
576features [59]. We apply widely used feature selection
577techniques for metric selection of a source dataset as in
578Section 4.1 [60], [61].
579After that, metrics based on their similarity such as distri-
580bution or correlation between the source and target metrics
581are matched up. In Fig. 2, three target metrics are matched
582with the same number of source metrics.
583After these processes, we finally arrive at a matched
584source and target metric set. With the final source dataset,
585HDP builds a model and predicts labels of target instances.
586In the following sections, we explain the metric selection
587and matching in detail.

5884.1 Metric Selection in Source Datasets

589For metric selection, we used various feature selection
590approaches widely used in defect prediction such as gain
591ratio, chi-square, relief-F, and significance attribute evalua-
592tion [60], [61]. In our experiments, we used Weka imple-
593mentation for these four feature selection approaches [62]
594According to benchmark studies about various feature
595selection approaches, a single best feature selection
596approach for all prediction models does not exist [63], [64],
597[65]. For this reason, we conduct experiments under differ-
598ent feature selection approaches. When applying feature
599selection approaches, we select top 15 percent of metrics as
600suggested by Gao et al. [60]. For example, if the number of
601features in a dataset is 200, we select 30 top features ranked
602by a feature selection approach. In addition, we compare

Fig. 2. Heterogeneous defect prediction.
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603 the prediction results with or without metric selection in the
604 experiments.

605 4.2 Matching Source and Target Metrics

606 Matching source and target metrics is the core of HDP. The
607 intuition of matching metrics is originated from the typical
608 defect-proneness tendency of software metrics, i.e., the
609 higher complexity of source code and development process
610 causes the more defect-proneness [1], [2], [66]. The higher
611 complexity of source code and development process is usu-
612 ally represented with the higher metric values. Thus, vari-
613 ous product and process metrics, e.g., McCabe’s cyclomatic,
614 lines of code, and the number of developers modifying a
615 file, follow this defect-proneness tendency [1], [2], [6], [15],
616 [16]. By matching metrics, HDP transfers this defect-prone-
617 ness tendency from a source project for predicting defects
618 in a target project. For example, assume that a metric, the
619 number of methods invoked by a class (RFC), in a certain
620 Java project (source) has the tendency that a class file having
621 the RFC value greater than 40 is highly defect-prone. If a tar-
622 get metric, the number of operands, follows the similar distri-
623 bution and its defect-proneness tendency, transferring this
624 defect-proneness tendency of the source metric, RFC, as
625 knowledge by matching the source and target metrics could
626 be effective to predict defects in the target dataset.
627 To match source and target metrics, we measure the sim-
628 ilarity of each source and target metric pair by using several
629 existing methods such as percentiles, Kolmogorov-Smirnov
630 Test, and Spearman’s correlation coefficient [67], [68]. We
631 define metric matching analyzers as follows:

632 � Percentile based matching (PAnalyzer)
633 � Kolmogorov-Smirnov Test based matching
634 (KSAnalyzer)
635 � Spearman’s correlation based matching
636 (SCoAnalyzer)
637 The key idea of these analyzers is computing matching
638 scores for all pairs between the source and target metrics.
639 Fig. 3 shows a sample matching. There are two source met-
640 rics (X1 and X2) and two target metrics (Y1 and Y2). Thus,
641 there are four possible matching pairs, (X1; Y1), (X1; Y2),
642 (X2; Y1), and (X2; Y2). The numbers in rectangles between
643 matched source and target metrics in Fig. 3 represent match-
644 ing scores computed by an analyzer. For example, the
645 matching score between the metrics,X1 and Y1, is 0.8.
646 From all pairs between the source and target metrics, we
647 remove poorly matchedmetrics whose matching score is not
648 greater than a specific cutoff threshold. For example, if the
649 matching score cutoff threshold is 0.3, we include only the
650 matchedmetrics whosematching score is greater than 0.3. In

651Fig. 3, the edge (X1; Y2) in matched metrics will be excluded
652when the cutoff threshold is 0.3. Thus, all the candidate
653matching pairs we can consider include the edges (X1; Y1),
654(X2; Y2), and (X2; Y1) in this example. In Section 5, we design
655our empirical study under different matching score cutoff
656thresholds to investigate their impact on prediction.
657We may not have any matched metrics based on the cut-
658off threshold. In this case, we cannot conduct defect predic-
659tion. In Fig. 3, if the cutoff threshold is 0.9, none of the
660matched metrics are considered for HDP so we cannot build
661a prediction model for the target dataset. For this reason, we
662investigate target prediction coverage (i.e., what percentage
663of target datasets could be predicted?) in our experiments.
664After applying the cutoff threshold, we used the maxi-
665mum weighted bipartite matching [69] technique to select a
666group of matched metrics, whose sum of matching scores is
667highest, without duplicated metrics. In Fig. 3, after applying
668the cutoff threshold of 0.30, we can form two groups of
669matched metrics without duplicated metrics. The first
670group consists of the edges, (X1; Y1) and (X2; Y2), and
671another group consists of the edge (X2; Y1). In each group,
672there are no duplicated metrics. The sum of matching scores
673in the first group is 1.3 (=0.8+0.5) and that of the second
674group is 0.4. The first group has a greater sum (1.3) of
675matching scores than the second one (0.4). Thus, we select
676the first matching group as the set of matched metrics for
677the given source and target metrics with the cutoff threshold
678of 0.30 in this example.
679Each analyzer for the metric matching scores is described
680in the following sections.

6814.2.1 PAnalyzer

682PAnalyzer simply compares nine percentiles (10th, 20th,...,
68390th) of ordered values between source and target metrics. A
684percentile is a statistical measure that indicates the value at a
685specific percentage of observations in descriptive statistics.
686By comparing differences at the nine percentiles, we simu-
687late the similarity between source and target metric values.
688The intuition of this analyzer comes from the assumption
689that the similar source and target metric values have similar
690statistical information. Since comparing only medians, i.e.,
69150th percentile just show one aspect of distributions of
692source and target metric values, we expand the comparison
693at the 9 spots of distributions of thosemetric values.
694First, we compute the difference of nth percentiles in
695source and target metric values by the following equation:

PijðnÞ ¼ spijðnÞ
bpijðnÞ ; (1)

697697

698where PijðnÞ is the comparison function for nth percentiles
699of ith source and jth target metrics, and spijðnÞ and bpijðnÞ
700are smaller and bigger percentile values respectively at nth
701percentiles of ith source and jth target metrics. For example,
702if the 10th percentile of the source metric values is 20 and
703that of target metric values is 15, the difference is 0.75
704(Pijð10Þ ¼ 15=20 ¼ 0:75). Then, we repeat this calculation at
705the 20th, 30th,..., 90th percentiles.
706Using this percentile comparison function, a matching
707score between source and target metrics is calculated by the
708following equation:

Fig. 3. An example of metric matching between source and target
datasets.
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Mij ¼
P9

k¼1 Pijð10� kÞ
9

; (2)
710710

711 where Mij is a matching score between ith source and jth
712 target metrics. For example, if we assume a set of all Pij, i.e.,
713 Pijð10� kÞ ¼ f0:75; 0:34; 0:23; 0:44; 0:55; 0:56; 0:78; 0:97; 0:55g,
714 Mij will be 0.574(=0:75þ0:34þ0:23þ0:44þ0:55þ0:56þ0:78þ0:97þ0:55

9 ). The
715 best matching score of this equation is 1.0 when the values
716 of the source and target metrics of all 9 percentiles are the
717 same, i.e., PijðnÞ ¼ 1.

718 4.2.2 KSAnalyzer

719 KSAnalyzer uses a p-value from the Kolmogorov-Smirnov
720 Test (KS-test) as a matching score between source and target
721 metrics. The KS-test is a non-parametric statistical test to
722 compare two samples [67], [70]. Particularly, the KS-test can
723 be applicable when we cannot be sure about the normality
724 of two samples and/or the same variance [67], [70]. Since
725 metrics in some defect datasets used in our empirical study
726 have exponential distributions [2] and metrics in other data-
727 sets have unknown distributions and variances, the KS-test
728 is a suitable statistical test to compare two metrics.
729 In the KS-test, a p-value shows the significance level with
730 which we have very strong evidence to reject the null
731 hypothesis, i.e., two samples are drawn from the same distri-
732 bution [67], [70]. We expected that matched metrics whose
733 null hypothesis can be rejected with significance levels speci-
734 fied by commonly used p-values such as 0.01, 0.05, and 0.10
735 can be filtered out to build a better prediction model. Thus,
736 we used a p-value of the KS-test to decide the matched met-
737 rics should be filtered out. We used the KolmogorovSmirnovT-
738 est implemented in theApache commons math3 3.3 library.
739 The matching score is

Mij ¼ pij; (3)
741741

742 where pij is a p-value from the KS-test of ith source and jth
743 target metrics. Note that in KSAnalyzer the higher matching
744 score does not represent the higher similarity of two met-
745 rics. To observe how the matching scores based on the KS-
746 test impact on prediction performance, we conducted
747 experiments with various p-values.

748 4.2.3 SCoAnalyzer

749 In SCoAnalyzer, we used the Spearman’s rank correlation
750 coefficient as a matching score for source and target met-
751 rics [68]. Spearman’s rank correlation measures how two
752 samples are correlated [68]. To compute the coefficient, we
753 used the SpearmansCorrelation in the Apache commons math3
754 3.3 library. Since the size of metric vectors should be the
755 same to compute the coefficient, we randomly select metric
756 values from a metric vector that is of a greater size than
757 another metric vector. For example, if the sizes of the source
758 and target metric vectors are 110 and 100 respectively, we
759 randomly select 100 metric values from the source metric to
760 agree to the size between the source and target metrics. All
761 metric values are sorted before computing the coefficient.
762 The matching score is as follows:

Mij ¼ cij; (4)
764764

765where cij is a Spearman’s rank correlation coefficient
766between ith source and jth target metrics.

7674.3 Building Prediction Models

768After applying metric selection and matching, we can
769finally build a prediction model using a source dataset with
770selected and matched metrics. Then, as a regular defect pre-
771diction model, we can predict defects on a target dataset
772with the matched metrics.

7735 EXPERIMENTAL SETUP

774This section presents the details of our experimental study
775such as benchmark datasets, experimental design, and eval-
776uation measures.

7775.1 Benchmark Datasets

778We collected publicly available datasets from previous stud-
779ies [1], [8], [12], [71], [72]. Table 1 lists all dataset groups
780used in our experiments. Each dataset group has a heteroge-
781neous metric set as shown in the table. Prediction Granular-
782ity in the last column of the table means the prediction

TABLE 1
The 34 Defect Datasets from Five Groups

Group Dataset # of instances # of
metrics

Prediction
Granularity

All Buggy(%)

AEEEM [1], [8]

EQ 324 129 (39.81%) 61 Class
JDT 997 206 (20.66%)
LC 691 64 (9.26%)
ML 1862 245 (13.16%)
PDE 1492 209 (14.01%)

ReLink [71]
Apache 194 98 (50.52%) 26 File
Safe 56 22 (39.29%)
ZXing 399 118 (29.57%)

MORPH [72]

ant-1.3 125 20 (16.00%) 20 Class
arc 234 27 (11.54%)

camel-1.0 339 13 (3.83%)
poi-1.5 237 141 (59.49%)
redaktor 176 27 (15.34%)
skarbonka 45 9 (20.00%)
tomcat 858 77 (8.97%)

velocity-1.4 196 147 (75.00%)
xalan-2.4 723 110 (15.21%)
xerces-1.2 440 71 (16.14%)

NASA [14], [73]

cm1 344 42 (12.21%) 37 Function
mw1 264 27 (10.23%)
pc1 759 61 (8.04%)
pc3 1125 140 (12.44%)
pc4 1399 178 (12.72%)
jm1 9593 1759 (18.34%) 21
pc2 1585 16 (1.01%) 36
pc5 17001 503 (2.96%) 38
mc1 9277 68 (0.73%) 38
mc2 127 44 (34.65%) 39
kc3 200 36 (18.00%) 39

SOFTLAB [12]

ar1 121 9 (7.44%) 29 Function
ar3 63 8 (12.70%)
ar4 107 20 (18.69%)
ar5 36 8 (22.22%)
ar6 101 15 (14.85%)
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783 granularity of instances. Since we focus on the distribution
784 or correlation of metric values when matching metrics, it is
785 beneficial to be able to apply the HDP approach on datasets
786 even in different granularity levels.
787 We used five groups with 34 defect datasets: AEEEM,
788 ReLink, MORPH, NASA, and SOFTLAB.
789 AEEEM was used to benchmark different defect predic-
790 tion models [1] and to evaluate CPDP techniques [8], [56].
791 Each AEEEM dataset consists of 61 metrics including
792 object-oriented (OO) metrics, previous-defect metrics,
793 entropy metrics of change and code, and churn-of-source-
794 code metrics [1].
795 Datasets in ReLink were used by Wu et al. [71] to
796 improve the defect prediction performance by increasing
797 the quality of the defect data and have 26 code complexity
798 metrics extracted by the Understand tool [74].
799 The MORPH group contains defect datasets of several
800 open source projects used in the study about the dataset pri-
801 vacy issue for defect prediction [72]. The 20 metrics used in
802 MORPH are McCabe’s cyclomatic metrics, CK metrics, and
803 other OO metrics [72].
804 NASA and SOFTLAB contain proprietary datasets from
805 NASA and a Turkish software company, respectively [12].
806 We used 11 NASA datasets in the PROMISE repository [14],
807 [73]. Some NASA datasets have different metric sets as
808 shown in Table 1. We used cleaned NASA datasets (DS0 ver-
809 sion) available from the PROMISE repository [14], [73]. For
810 the SOFTLAB group, we used all SOFTLAB datasets in the
811 PROMISE repository [14]. The metrics used in both NASA
812 and SOFTLAB groups are Halstead and McCabe’s cyclo-
813 matic metrics but NASA has additional complexity metrics
814 such as parameter count and percentage of comments [14].
815 Predicting defects is conducted across different dataset
816 groups. For example, we build a prediction model by
817 Apache in ReLink and tested the model on velocity-1.4 in
818 MORPH (Apache)velocity-1.4).2 Since some NASA data-
819 sets do not have the same metric sets, we also conducted
820 cross prediction between some NASA datasets that have
821 different metric sets, e.g., (cm1)jm1).
822 We did not conduct defect prediction across projects
823 where datasets have the same metric set since the focus of
824 our study is on prediction across datasets with heteroge-
825 neous metric sets. In total, we have 962 possible prediction
826 combinations from these 34 datasets. Since we select top
827 15 percent of metrics from a source dataset for metric selec-
828 tion as explained in Section 4.1, the number of selected
829 metrics varies from 3 (MORPH) to 9 (AEEEM) [60]. For
830 datasets, we did not apply any data preprocessing approach
831 such as log transformation [2] and sampling techniques for
832 class imbalance [75] since the study focus is on the heteroge-
833 neous issue on CPDP datasets.

834 5.2 Cutoff Thresholds for Matching Scores

835 To buildHDPmodels, we apply various cutoff thresholds for
836 matching scores to observe how prediction performance
837 varies according to different cutoff values. Matched metrics
838 by analyzers have their ownmatching scores as explained in
839 Section 4. We apply different cutoff values (0.05 and 0.10,

8400.20,..., 0.90) for the HDPmodels. If a matching score cutoff is
8410.50, we remove matched metrics with the matching score �
8420.50 and build a prediction model with matched metrics
843with the score > 0.50. The number of matchedmetrics varies
844by each prediction combination. For example, when using
845KSAnalyzer with the cutoff of 0.05, the number of matched
846metrics is four in cm1)ar5 while that is one in ar6)pc3. The
847average number of matched metrics also varies by analyzers
848and cutoff values; 4 (PAnalyzer), 2 (KSAnalyzer), and 5
849(SCoAnalyzer) in the cutoff of 0.05 but 1 (PAnalyzer), 1
850(KSAnalyzer), and 4 (SCoAnalyzer) in the cutoff of 0.90.

8515.3 Baselines

852We compare HDP to four baselines: WPDP (Baseline1),
853CPDP using common metrics between source and target
854datasets (Baseline2), CPDP-IFS (Baseline3), and Unsuper-
855vised defect prediction (Baseline4).
856We first compare HDP to WPDP. Comparing HDP to
857WPDP will provide empirical evidence of whether our HDP
858models are applicable in practice. When conducting WPDP,
859we applied feature selection approached to remove redun-
860dant and irrelevant features as suggested by Gao et al. [60].
861To fairly compare WPDP with HDP, we used the same fea-
862ture selection techniques used for metric selection in HDP
863as explained in Section 4.1 [60], [61].
864We conduct CPDP using only common metrics (CPDP-
865CM) between source and target datasets as in previous CPDP
866studies [10], [12], [56]. For example, AEEEM and MORPH
867have OO metrics as common metrics so we select them to
868build prediction models for datasets between AEEEM and
869MORPH. Since selecting common metrics has been adopted
870to address the limitation on heterogeneous metric sets in pre-
871vious CPDP studies [10], [12], [56], we set CPDP-CM as a
872baseline to evaluate our HDP models. The number of com-
873mon metrics varies across the dataset groups as ranged from
8741 to 38. Between AEEEM and ReLink, only one commonmet-
875ric exists, LOC (ck_oo_numberOfLinesOfCode : CountLine-
876Code). Some NASA datasets that have different metric sets,
877e.g., pc5 versus mc2, have 38 common metrics. On average,
878the number of common metrics in our datasets is about 12.
879We put all the common metrics between the five dataset
880groups in the online appendix: https://lifove.github.io/hdp/#cm.
881We include CPDP-IFS proposed by He et al. as a base-
882line [56]. CPDP-IFS enables defect prediction on projects with
883heterogeneousmetric sets (Imbalanced Feature Sets) by using
884the 16 distribution characteristics of values of each instance
885with all metrics. The 16 distribution characteristics are mode,
886median, mean, harmonic mean, minimum,maximum, range,
887variation ratio, first quartile, third quartile, interquartile
888range, variance, standard deviation, coefficient of variance,
889skewness, and kurtosis [56]. The 16 distribution characteris-
890tics are used as features to build a predictionmodel [56].
891As Baseline4, we add unsupervised defect prediction
892(UDP). UDP does not require any labeled source data so
893that researchers have proposed UDP to avoid a CPDP limi-
894tation of different distributions between source and target
895datasets. Recently, fully automated unsupervised defect
896prediction approaches have been proposed by Nam and
897Kim [66] and Zhang et al. [76]. In the experiments, we chose
898to use CLAMI proposed by Nam and Kim [66] for UDP
899because of the following reasons. First, there are no

2. Hereafter a rightward arrow ()) denotes a prediction
combination.
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900 comparative studies between CLAMI and the approach of
901 Zhang et al. yet [66], [76]. Thus, it is difficult to judge which
902 approach is better at this moment. Second, our HDP experi-
903 mental framework is based on Java and Weka as CLAMI
904 does. This would be beneficial when we compare
905 CLAMI and HDP under the consistent experimental setting.
906 CLAMI conducts its own metric and instance selection heu-
907 ristics to generate prediction models [66].

908 5.4 Experimental Design

909 For the machine learning algorithm, we use seven widely
910 used classifiers such as Simple logistic, Logistic regression,
911 Random Forest, Bayesian Network, Support vector
912 machine, J48 decision tree, and Logistic model tree [1], [7],
913 [8], [77], [77], [78], [79]. For these classifiers, we use Weka
914 implementation with default options [62].
915 For WPDP, it is necessary to split datasets into training
916 and test sets. We use the two-fold cross validation (CV),
917 which is widely used in the evaluation of defect prediction
918 models [8], [80], [81]. In the two-fold CV, we use one half of
919 the instances for training a model and the rest for test
920 (round 1). Then, we use the two splits (folds) in a reverse
921 way, where we use the previous test set for training and the
922 previous training set for test (round 2). We repeat these two
923 rounds 500 times, i.e., 1,000 tests, since there is randomness
924 in selecting instances for each split [82]. When conducting
925 the two-fold CV, the stratified CV that keeps the buggy rate
926 of the two folds same as that of the original datasets is
927 applied as we used the default options in Weka [62].
928 For CPDP-CM, CPDP-IFS, UDP, and HDP, we test the
929 model on the same test splits used in WPDP. For CPDP-
930 CM, CPDP-IFS, and HDP, we build a prediction model by
931 using a source dataset, while UDP does not require any
932 source datasets as it is based on the unsupervised learning.
933 Since there are 1,000 different test splits for a within-project
934 prediction, the CPDP-CM, CPDP-IFS, UDP, and HDP mod-
935 els are tested on 1000 different test splits as well.
936 These settings for comparing HDP to the baselines are for
937 RQ1. The experimental settings for RQ2 is described in
938 Section 7 in detail.

939 5.5 Measures

940 To evaluate the prediction performance, we use the area
941 under the receiver operating characteristic curve (AUC).
942 Evaluation measures such as precision is highly affected by
943 prediction thresholds and defective ratios (class imbalance)
944 of datasets [83]. However, the AUC is known as a useful
945 measure for comparing different models and is widely used
946 because AUC is unaffected by class imbalance as well as
947 being independent from the cutoff probability (prediction
948 threshold) that is used to decide whether an instance should
949 be classified as positive or negative [11], [78], [79], [83], [84].
950 Mende confirmed that it is difficult to compare the defect
951 prediction performance reported in the defect prediction lit-
952 erature since prediction results come from the different cut-
953 offs of prediction thresholds [85]. However, the receiver
954 operating characteristic curve is drawn by both the true pos-
955 itive rate (recall) and the false positive rate on various pre-
956 diction threshold values. The higher AUC represents better
957 prediction performance and the AUC of 0.5 means the per-
958 formance of a random predictor [11].

959To measure the effect size of AUC results among
960baselines and HDP, we compute Cliff’s d that is a
961non-parametric effect size measure [86]. As Romano et al.
962suggested, we evaluate the magnitude of the effect size as
963follows: negligible (jdj < 0.147), small (jdj < 0.33), medium
964(jdj < 0.474), and large (0.474 � jdj) [86].
965To compare HDP by our approach to baselines, we also
966use the Win/Tie/Loss evaluation, which is used for perfor-
967mance comparison between different experimental settings
968in many studies [87], [88], [89]. As we repeat the experiments
9691,000 times for a target project dataset, we conduct the Wil-
970coxon signed-rank test (p< 0.05) for all AUC values in base-
971lines and HDP [90]. If an HDP model for the target dataset
972outperforms a corresponding baseline result after the statisti-
973cal test, wemark thisHDPmodel as a ‘Win’. In a similarway,
974we mark an HDP model as a ‘Loss’ when the results of a
975baseline are better than those of our HDP approach with sta-
976tistical significance. If there is no difference between a base-
977line and HDP with statistical significance, we mark this case
978as a ‘Tie’. Then, we count the number of wins, ties, and losses
979for HDP models. By using the Win/Tie/Loss evaluation, we
980can investigate how many HDP predictions it will take to
981improve baseline approaches.

9826 PREDICTION PERFORMANCE OF HDP

983In this section, we present the experimental results of the
984HDP approach to address RQ1.
985RQ1: Is heterogeneous defect prediction comparable to WPDP,
986existing CPDP approaches for heterogeneous metric sets (CPDP-
987CM and CPDP-IFS), and UDP?
988RQ1 leads us to investigate whether our HDP is compa-
989rable to WPDP (Baseline1), CPDP-CM (Baseline2), CDDP-
990IFS (Baseline3), and UDP (Baseline4). We report the repre-
991sentative HDP results in Sections 6.1, 6.2, 6.3, and 6.4 based
992on Gain ratio attribute selection for metric selection, KSAna-
993lyzer with the cutoff threshold of 0.05, and the Logistic
994classifier. Among different metric selections, Gain ratio
995attribute selection with Logistic led to the best prediction
996performance overall. In terms of analyzers, KSAnalyzer led
997to the best prediction performance. Since the KSAnalyzer is
998based on the p-value of a statistical test, we chose a cutoff of
9990.05 which is one of commonly accepted significance levels
1000in the statistical test [91].
1001In Sections 6.5, 6.6, and 6.7, we report the HDP results by
1002using various metric selection approaches, metric matching
1003analyzers, and machine learners respectively to investigate
1004HDP performances more in terms of RQ1.

10056.1 Comparison Result with Baselines

1006Table 2 shows the prediction performance (a median AUC)
1007of baselines and HDP by KSAnalyzer with the cutoff of 0.05
1008and Cliff’s d with its magnitude for each target. The last
1009row, All targets, show an overall prediction performance of
1010baslines and HDP in a median AUC. Baseline1 represents
1011the WPDP results of a target project and Baseline2 shows
1012the CPDP results using common metrics (CPDP-CM)
1013between source and target projects. Baseline3 shows the
1014results of CPDP-IFS proposed by He et al. [56] and Baseline4
1015represents the UDP results by CLAMI [66]. The last column
1016shows the HDP results by KSAnalyzer with the cutoff
1017of 0.05. If there are better results between Baseline1 and our
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1018 approach with statistical significance (Wilcoxon signed-
1019 rank test [90], p< 0.05), the better AUC values are in bold
1020 font as shown in Table 2. Between Baseline2 and our
1021 approach, better AUC values with statistical significance
1022 are underlined in the table. Between Baseline3 and our
1023 approach, better AUC values with statistical significance
1024 are shown with an asterisk (*). Between Baseline4 and our
1025 approach, better AUC values with statistical significance
1026 are shown with an ampersand (&).
1027 The values in parentheses in Table 2 show Cliff’s d and its
1028 magnitude for the effect size among baselines and HDP. If a
1029 Cliff’s d is a positive value, HDP improves a baseline in
1030 terms of the effect size. As explained in Section 5.5, based
1031 on a Cliff’s d, we can estimate the magnitude of the effect
1032 size (N: Negligible, S: Small, M: Medium, and L: Large). For
1033 example, the Cliff’s d of AUCs between WPDP and HDP for
1034 pc5 is 0.828 and its magnitude is Large as in Table 2. In other
1035 words, HDP outperforms WPDP in pc5 with the large mag-
1036 nitude of the effect size.
1037 We observed the following results about RQ1:

1038 � The 18 out of 34 targets (Safe, ZXing, ant-1.3, arc,
1039 camel-1.0, poi-1.5, skarbonka, xerces-1.2, mw1, pc2,
1040 pc5, mc1, mc2, kc3, ar1, ar3, ar4, and ar5) show better

1041with statistical significance or comparable results
1042against WPDP. However, HDP by KSAnalyzer with
1043the cutoff of 0.05 did not lead to better with statistical
1044significance or comparable against WPDP in All in
1045our empirical settings. Note that WPDP is an upper
1046bound of prediction performance. In this sense, HDP
1047shows potential when there are no training datasets
1048with the same metric sets as target datasets.
1049� The Cliff’s d values between WPDP and HDP are
1050positive in 14 out of 34 targets. In about 41 percent
1051targets, HDP shows negligible or better results to
1052HDP in terms of effect size.
1053� HDP by KSAnalyzer with the cutoff of 0.05 leads to
1054better or comparable results to CPDP-CM with sta-
1055tistical significance. (no underlines in CPDP-CM of
1056Table 2)
1057� HDP by KSAnalyzer with the cutoff of 0.05 outper-
1058forms CPDP-CM with statistical significance when
1059considering results from All targets in our experi-
1060mental settings.
1061� The Cliff’s d values between CPDP-CM and HDP are
1062positive in 30 out 34 targets. In other words, HDP
1063improves CPDP-CM in most targets in terms of effect
1064size.

TABLE 2
Comparison Results Among WPDP, CPDP-CM, CPDP-IFS, UDP, and HDP by KSAnalyzer with the Cutoff of 0.05 in a Median AUC

Target WPDP (Baseline1) CPDP-CM (Baseline2) CPDP-IFS (Baseline3) UDP (Baseline4) HDP KS

EQ 0.801 (-0.519,L) 0.776 (-0.126,N) 0.461 (0.996,L) 0.737 (0.312,S) 0.776*
JDT 0.817 (-0.889,L) 0.781 (0.153,S) 0.543 (0.999,L) 0.733 (0.469,M) 0.767*
LC 0.765 (-0.915,L) 0.636 (0.059,N) 0.584 (0.198,S) 0.732& (-0.886,L) 0.655
ML 0.719 (-0.470,M) 0.651 (0.642,L) 0.557 (0.999,L) 0.630 (0.971,L) 0.692*&

PDE 0.731 (-0.673,L) 0.681 (0.064,N) 0.566 (0.836,L) 0.646 (0.494,L) 0.692*
Apache 0.757 (-0.398,M) 0.697 (0.228,S) 0.618 (0.566,L) 0.754& (-0.404,M) 0.720*
Safe 0.829 (-0.002,N) 0.749 (0.409,M) 0.630 (0.704,L) 0.773 (0.333,M) 0.837*&

ZXing 0.626 (0.409,M) 0.618 (0.481,L) 0.556 (0.616,L) 0.644 (0.099,N) 0.650
ant-1.3 0.800 (-0.211,S) 0.781 (0.163,S) 0.528 (0.579,L) 0.775 (-0.069,N) 0.800*
arc 0.726 (-0.288,S) 0.626 (0.523,L) 0.547 (0.954,L) 0.615 (0.677,L) 0.701
camel-1.0 0.722 (-0.300,S) 0.590 (0.324,S) 0.500 (0.515,L) 0.658 (-0.040,N) 0.639
poi-1.5 0.717 (-0.261,S) 0.675 (0.230,S) 0.640 (0.509,L) 0.720 (-0.307,S) 0.706
redaktor 0.719 (-0.886,L) 0.496 (0.067,N) 0.489 (0.246,S) 0.489 (0.184,S) 0.528
skarbonka 0.589 (0.594,L) 0.744 (-0.083,N) 0.540 (0.581,L) 0.778& (-0.353,M) 0.694*
tomcat 0.814 (-0.935,L) 0.675 (0.961,L) 0.608 (0.999,L) 0.725 (0.273,S) 0.737*&

velocity-1.4 0.714 (-0.987,L) 0.412 (-0.142,N) 0.429 (-0.138,N) 0.428 (-0.175,S) 0.391
xalan-2.4 0.772 (-0.997,L) 0.658 (-0.997,L) 0.499 (0.894,L) 0.712& (-0.998,L) 0.560*
xerces-1.2 0.504 (-0.040,N) 0.462 (0.446,M) 0.473 (0.200,S) 0.456 (0.469,M) 0.497
cm1 0.741 (-0.383,M) 0.597 (0.497,L) 0.554 (0.715,L) 0.675 (0.265,S) 0.720*
mw1 0.726 (-0.111,N) 0.518 (0.482,L) 0.621 (0.396,M) 0.680 (0.236,S) 0.745
pc1 0.814 (-0.668,L) 0.666 (0.814,L) 0.557 (0.997,L) 0.693 (0.866,L) 0.754*&

pc3 0.790 (-0.819,L) 0.665 (0.815,L) 0.511 (1.000,L) 0.667 (0.921,L) 0.738*&

pc4 0.850 (-1.000,L) 0.624 (0.204,S) 0.590 (0.856,L) 0.664 (0.287,S) 0.681*
jm1 0.705 (-0.662,L) 0.571 (0.662,L) 0.563 (0.914,L) 0.656 (0.665,L) 0.688*
pc2 0.878 (0.202,S) 0.634 (0.795,L) 0.474 (0.988,L) 0.786 (0.996,L) 0.893*&

pc5 0.932 (0.828,L) 0.841 (0.999,L) 0.260 (0.999,L) 0.885 (0.999,L) 0.950*&

mc1 0.885 (0.164,S) 0.832 (0.970,L) 0.224 (0.999,L) 0.806 (0.999,L) 0.893*&

mc2 0.675 (-0.003,N) 0.536 (0.675,L) 0.515 (0.592,L) 0.681 (-0.096,N) 0.682*
kc3 0.647 (0.099,N) 0.636 (0.254,S) 0.568 (0.617,L) 0.621 (0.328,S) 0.678*
ar1 0.614 (0.420,M) 0.464 (0.647,L) 0.586 (0.398,M) 0.680 (0.213,S) 0.735
ar3 0.732 (0.356,M) 0.839 (0.243,S) 0.664 (0.503,L) 0.750 (0.343,M) 0.830*&

ar4 0.816 (-0.076,N) 0.588 (0.725,L) 0.570 (0.750,L) 0.791 (0.139,N) 0.805*&

ar5 0.875 (0.043,N) 0.875 (0.287,S) 0.766 (0.339,M) 0.893 (-0.037,N) 0.911
ar6 0.696 (-0.149,S) 0.613 (0.377,M) 0.524 (0.485,L) 0.683 (-0.133,N) 0.676*
All 0.732 0.632 0.558 0.702 0.711*&

(Cliff’s d magnitude — N: Negligible, S: Small, M: Medium, and L: Large).
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1065 � HDP by KSAnalyzer with the cutoff of 0.05 leads to
1066 better or comparable results to CPDP-IFS with statis-
1067 tical significance. (no asterisks in CPDP-IFS of
1068 Table 2)
1069 � HDP by KSAnalyzer with the cutoff of 0.05 outper-
1070 forms CPDP-IFS with statistical significance when
1071 considering results from All targets in our experi-
1072 mental settings.
1073 � The Cliff’s d values between CPDP-IFS and HDP are
1074 positive in all targets except for velocity-1.4.
1075 � HDP by KSAnalyzer with the cutoff of 0.05 outper-
1076 forms UDP with statistical significance when consid-
1077 ering results from All targets in our experimental
1078 settings.
1079 � The magnitude of Cliff’s d values between UDP and
1080 HDP are negligible or positively better in 29 out 34
1081 targets.

1082 6.2 Target Prediction Coverage

1083 Target prediction coverage shows how many target projects
1084 can be predicted by the HDP models. If there are no feasible
1085 prediction combinations for a target because of there being
1086 no matched metrics between source and target datasets, it
1087 might be difficult to use an HDP model in practice.
1088 For target prediction coverage, we analyzed our HDP
1089 results by KSAnalyzer with the cutoff of 0.05 by each source
1090 group. For example, after applying metric selection and
1091 matching, we can build a prediction model by using EQ in
1092 AEEEM and predict each of 29 target projects in four other
1093 dataset groups. However, because of the cutoff value, some
1094 predictions may not be feasible. For example, EQ)Apache
1095 was not feasible because there are no matched metrics
1096 whose matching scores are greater than 0.05. Instead,
1097 another source dataset, JDT, in AEEEM has matched metrics
1098 to Apache. In this case, we consider the source group,
1099 AEEEM, covered Apache. In other words, if any dataset in a
1100 source group can be used to build an HDP model for a tar-
1101 get, we count the target prediction is as covered.
1102 Table 3 shows the median AUCs and prediction target
1103 coverage. The median AUCs were computed by the AUC
1104 values of the feasible HDP predictions and their corre-
1105 sponding predictions of WPDP, CPDP-CM, CPDP-IFS, and
1106 UDP. We conducted the Wilcoxon signed-rank test on
1107 results between WPDP and baselines [90]. Like Table 2, bet-
1108 ter results between baselines and our approach with statisti-
1109 cal significance are in bold font, underlined, with asterisks
1110 and/or with ampersands.
1111 First of all, in each source group, we could observe
1112 WPDP did not outperform HDP in three source groups,

1113AEEEM, MORPH, and NASA, with statistical significance.
1114For example, 29 target projects (34� 5 AEEEM datasets)
1115were predicted by some projects in AEEEM and the median
1116AUC for HDP by KSAnalyzer is 0.753 while that of WPDP
1117is 0.732. In addition, HDP by KSAnalyzer also outperforms
1118CPDP-CM and CPDP-IFS. There are no better results in
1119CPDP-CM than those in HDP by KSAnalyzer with statistical
1120significance (no underlined results in third column in
1121Table 3). In addition, HDP by KSAnalyzer outperforms
1122CPDP-IFS in most source groups with statistical significance
1123except for AEEEM. Between UDP and HDP, we did not
1124observe significant performance difference as there are no
1125ampersands in any AUC values in both UDP and HDP.
1126The target prediction coverage in the NASA and SOFT-
1127LAB groups yielded 100 percent as shown in Table 3. This
1128implies our HDP models may conduct defect prediction
1129with high target coverage even using datasets which only
1130appear in one source group. AEEEM, ReLink, and MORPH
1131groups have 35, 84, and 92 percent respectively since some
1132prediction combinations do not have matched metrics
1133because of low matching scores (�0.05). Thus, some predic-
1134tion combinations using matched metrics with low match-
1135ing scores can be automatically excluded. In this sense, our
1136HDP approach follows a similar concept to the two-phase
1137prediction model [92]: (1) checking prediction feasibility
1138between source and target datasets, and (2) predicting
1139defects. This mechanism is helpful to filter out the matched
1140metrics whose distributions are not similar depending on a
1141matching score.
1142Target coverage limitation from AEEEM, ReLink, or
1143MORPH groups can be solved by using either NASA or
1144SOFTLAB groups. This shows the scalability of HDP as it
1145can easily overcome the target coverage limitation by add-
1146ing any existing defect datasets as a source until we can
1147achieve the 100 percent target coverage.

11486.3 Win/Tie/Loss Results

1149To investigate the evaluation results for HDP in detail, we
1150report the Win/Tie/Loss results of HDP by KSAnalyzer
1151with the cutoff of 0.05 against WPDP (Baseline1), CPDP-CM
1152(Baseline2), CPDP-IFS (Baseline3), and UDP (Baseline4) in
1153Table 4.
1154KSAnalyzer with the cutoff of 0.05 conducted 284 out of
1155962 prediction combinations since 678 combinations do not
1156have any matched metrics because of the cutoff threshold.
1157In Table 4, the target dataset, ZXing, was predicted in five
1158prediction combinations and our approach, HDP, outper-
1159forms Baselines in the four or five combinations (i.e., 4 or 5
1160Wins). However, CPDP-CM and CPDP-IFS outperform
1161HDP in one combination of the target, ZXing (1 Loss).
1162Against Baseline1, the four targets such as ZXing, skar-
1163bonka, pc5, and mc1 have only Win results. In other words,
1164defects in those four targets could be predicted better by
1165other source projects using HDP models by KSAnalyzer
1166compared to WPDP models.
1167In Fig. 4, we analyzed distributions of matched metrics
1168using box plots for one of Win cases, ant-1.3)ar5. The gray,
1169black, and white box plots show distributions of matched
1170metric values in all, buggy, and clean instances respectively.
1171The three box plots on the left-hand side represent distribu-
1172tions of a source metric while the three box plots on the

TABLE 3
Median AUCs of Baselines and HDP in KSAnalyzer

(Cutoff = 0.05) by Each Source Group

Source WPDP CPDP-
CM

CPDP-
IFS

UDP HDP
KS,0.05

HDP Target
Coverage

AEEEM 0.732 0.750 0.722 0.776 0.753 35%
Relink 0.731 0.655 0.500 0.683 0.694* 84%
MORPH 0.741 0.652 0.589 0.732 0.724* 92%
NASA 0.732 0.550 0.541 0.754 0.734* 100%
SOFTLAB 0.741 0.631 0.551 0.681 0.692* 100%

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. X, XX 2017



1173 right-hand side represent those of a target metric. The bot-
1174 tom and top of the boxes represent the first and third quar-
1175 tiles respectively. The solid horizontal line in a box
1176 represents the median metric value in each distribution.
1177 Black points in the figure are outliers.
1178 Fig. 4 explains how the prediction combination of ant-
1179 1.3)ar5 can have a high AUC, 0.946. Suppose that a simple
1180 model predicts that an instance is buggy when the metric
1181 value of the instance is more than 40 in the case of Fig. 4. In
1182 both datasets, approximately 75 percent or more buggy and
1183 clean instances will be predicted correctly. In Fig. 4, the
1184 matched metrics in ant-1.3)ar5 are the response for class
1185 (RFC: number of methods invoked by a class) [93] and the
1186 number of unique operands (unique_operands) [4], respec-
1187 tively. The RFC and unique_operands are not the same metric
1188 so it might look like an arbitrary matching. However, they
1189 are matched based on their similar distributions as shown
1190 in Fig. 4. Typical defect prediction metrics have tendencies
1191 in which higher complexity causes more defect-prone-
1192 ness [1], [2], [6]. In Fig. 4, instances with higher values of
1193 RFC and unique_operands have the tendency to be more

1194defect-prone. For this reason, the model using the matched
1195metrics could achieve such a high AUC (0.946). We could
1196observe this defect-proneness tendency in other Win results
1197(See the online appendix, https://lifove.github.io/hdp/#pc).
1198Since matching metrics is based on similarity of source and
1199target metric distributions, HDP also addresses several issues

TABLE 4
Win/Tie/Loss Results of HDP by KSAnalyzer (Cutoff = 0.05) Against WPDP (Baseline1),

CPDP-CM (Baseline2), CPDP-IFS (Baseline3), and UDP (Baseline4)

Target

Against

WPDP (Baseline1) CPDP-CM (Baseline2) CPDP-IFS (Baseline3) UDP (Baseline4)

Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss

EQ 0 0 4 1 2 1 4 0 0 3 0 1
JDT 0 0 5 3 0 2 5 0 0 4 0 1
LC 0 0 7 3 3 1 3 1 3 0 0 7
ML 0 0 6 4 2 0 6 0 0 6 0 0
PDE 0 0 5 2 0 3 5 0 0 4 0 1
Apache 4 0 8 8 0 4 10 0 2 4 0 8
Safe 11 1 7 14 0 5 17 0 2 15 1 3
ZXing 5 0 0 4 0 1 4 0 1 4 1 0
ant-1.3 5 1 5 7 0 4 9 0 2 6 0 5
arc 0 0 3 2 0 1 3 0 0 3 0 0
camel-1.0 2 0 5 5 0 2 6 0 1 3 0 4
poi-1.5 2 0 2 3 1 0 2 0 2 2 0 2
redaktor 0 0 4 2 0 2 3 0 1 3 0 1
skarbonka 15 0 0 5 1 9 13 0 2 2 0 13
tomcat 0 0 1 1 0 0 1 0 0 1 0 0
velocity-1.4 0 0 6 2 0 4 2 0 4 2 0 4
xalan-2.4 0 0 1 0 0 1 1 0 0 0 0 1
xerces-1.2 1 0 1 2 0 0 1 0 1 2 0 0
cm1 0 1 9 8 0 2 9 0 1 7 0 3
mw1 4 0 3 5 0 2 5 0 2 5 0 2
pc1 0 0 7 6 0 1 7 0 0 7 0 0
pc3 0 0 7 7 0 0 7 0 0 7 0 0
pc4 0 0 8 5 0 3 8 0 0 6 0 2
jm1 1 0 5 5 0 1 6 0 0 5 0 1
pc2 4 0 1 5 0 0 5 0 0 5 0 0
pc5 1 0 0 1 0 0 1 0 0 1 0 0
mc1 1 0 0 1 0 0 1 0 0 1 0 0
mc2 10 2 6 15 0 3 14 0 4 8 2 8
kc3 9 0 2 8 0 3 10 0 1 9 0 2
ar1 12 0 2 12 1 1 10 0 4 12 0 2
ar3 15 0 2 8 0 9 11 2 4 15 0 2
ar4 6 1 10 15 1 1 16 0 1 13 2 2
ar5 15 0 7 15 0 7 15 0 7 14 1 7
ar6 5 0 11 10 3 3 13 0 3 5 3 8

Total 128 6 150 194 14 76 233 3 48 184 10 90
% 45.1% 2.1% 52.8% 68.3% 4.9% 26.8% 82.0% 1.1% 16.9% 64.8% 3.5% 31.7%

Fig. 4. Distribution of metrics (matching score=0.91) from ant-1.3)ar5
(AUC = 0.946).
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1200 related to a dataset shift such as the covariate shift and
1201 domain shift discussed by Turhan [94].
1202 However, there are still about 52.8 percent Loss results
1203 against WPDP as shown in Table 4. The 14 targets have no
1204 Wins at all against Baseline1. In addition, other targets still
1205 have Losses even though they have Win or Tie results.
1206 As a representative Loss case, we investigated distribu-
1207 tions of the matched metrics in Safe)velocity-1.4, whose
1208 AUC is 0.391. As observed, Loss results were usually
1209 caused by different tendencies of defect-proneness
1210 between source and target metrics. Fig. 5 shows how the
1211 defect-prone tendencies of source and target metrics are
1212 different. Interestingly, the matched source and target
1213 metric by the KSAnalyzer is the same as LOC (CountLine-
1214 Code and loc) in both. As we observe in the figure, the
1215 median metric value of buggy instances is higher than that
1216 of clean instances in that the more LOC implies the higher
1217 defect-proneness in the case of Safe. However, the median
1218 metric value of buggy instances in the target is lower than
1219 that of clean instances in that the less LOC implies the
1220 higher defect-proneness in velocity-1.4. This inconsistent
1221 tendency of defect-proneness between the source and tar-
1222 get metrics could degrade the prediction performance
1223 although they are the same metric.
1224 We regard the matching that has an inconsistent defect-
1225 proneness tendency between source and target metrics as a
1226 noisymetricmatching.We could observe this kind of noisymet-
1227 ricmatching in prediction combinations in other Loss results.
1228 However, it is very challenging to filter out the noisy
1229 metric matching since we cannot know labels of target
1230 instances in advance. If we could design a filter for the
1231 noisy metric matching, the Loss results would be mini-
1232 mized. Thus, designing a new filter to mitigate these Loss
1233 results is an interesting problem to address. Investigating
1234 this new filter for the noisy metric matching will remain as
1235 future work.
1236 Fig. 5 also explains why CPDP-CM did not show reason-
1237 able prediction performance. Although the matched metrics
1238 are same as LOC, its defect-prone tendency is inconsistent.
1239 Thus, this matching using the common metric was noisy
1240 and was not helpful for building a prediction model.
1241 Overall, the numbers of Win and Tie results are 128 and 6
1242 respectively out of all 284 prediction combinations. This
1243 means that in 47.1 percent of prediction combinations our
1244 HDP models achieve better or comparable prediction per-
1245 formance than those in WPDP.

1246However, HDP shows relatively better results against
1247Baseline2, Baseline3, and Baseline4 in terms of the Win/
1248Tie/Loss evaluation. In the 208 (73.2 percent) out of 284 pre-
1249diction combinations, HDP outperforms and is comparable
1250to CPDP-CM. Against Baseline3, 236 (83.1 percent) predic-
1251tion combinations are Win or Tie results. Against Baseline4,
1252HDP has 194 Win or Tie results (68.3 percent). In addition,
1253there are at least one Win case for all targets against CPDP-
1254CM, CPDP-IFS, and UDP except for LC and xalan-2.4 in
1255UDP (Table 4). From 284 out of 962 combinations, we could
1256achieve the 100 percent target coverage and find at least one
1257HDP model that are better than that by CPDP-CM, CPDP-
1258IFS, or UDP in most combinations.

12596.4 Performance by Source Datasets

1260Table 5 shows prediction performance of HDP (KSAna-
1261lyzer, cutoff=0.05, and Gain Ratio feature selection) by each
1262source dataset. The 3rd and 6th columns represent the num-
1263ber of targets predicted by a source. For example, EQ pre-
1264dicts five targets by HDP and the median AUC from these
1265five target predictions is 0.794. Since the total number of fea-
1266sible target predictions is 284 out of all 962 prediction com-
1267binations, six source datasets (PDE, redaktor, velocity-1.4,
1268xerces-1.2, pc4, and pc5) did not predict any targets because
1269there were no matched metrics.
1270The higher defect ratio of a training dataset may make
1271bias as the prediction performance of the dataset with the
1272higher defect ratio may be better than that with the lower
1273defect ratio [83]. To investigate if HDP is also affected by
1274defect ratio of the training dataset and what makes better
1275prediction performance, we analyzed the best and worst
1276source datasets that lead to the best and worst AUC values,
1277respectively.
1278We found that HDP does not bias prediction perfor-
1279mance from the defect ratios of datasets and prediction per-
1280formance is highly depending on the defect-proneness
1281tendency of matched metrics under our experiments. As
1282shown in Table 5, the best source dataset is mc1 (0.856)
1283although its defect ratio is very low, 0.73 percent. We

Fig. 5. Distribution of metrics (matching score=0.45) from Safe)veloc-
ity-1.4 (AUC = 0.391).

TABLE 5
HDP Prediction Performance in Median

AUC by Source Datasets

Source AUC # of Targets Source AUC # of Targets

EQ 0.794 5 JDT 0.756 10
LC 0.674 2 ML 0.714 3
PDE n/a 0 Apache 0.720 17
Safe 0.684 22 ZXing 0.707 12
ant-1.3 0.738 16 arc 0.666 8
camel-1.0 0.803 2 poi-1.5 0.761 6
redaktor n/a 0 skarbonka 0.692 17
tomcat 0.739 9 velocity-1.4 n/a 0
xalan-2.4 0.762 7 xerces-1.2 n/a 0
cm1 0.630 9 mw1 0.710 13
pc1 0.734 9 pc3 0.786 9
pc4 n/a 0 jm1 0.678 8
pc2 0.822 3 pc5 n/a 0
mc1 0.856 3 mc2 0.739 20
kc3 0.689 5 ar1 0.320 3
ar3 0.740 11 ar4 0.674 18
ar5 0.691 28 ar6 0.740 9
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1284 investigate distributions of matched metrics of EQ like
1285 Figs. 4 and 5.3 We observed that all the matched metrics for
1286 the source, EQ, show the typical defect-proneness tendency
1287 similarly to Fig. 4. The worst source dataset is ar1 (0.320)
1288 whose defect ratio is 7.44 percent. We observed that the
1289 matched metrics of ar1 show inconsistent tendency of
1290 defect-proneness between source and target, i.e., noisy met-
1291 ric matching. From these best and worst cases, we confirm
1292 again the consistent defect-proneness tendency of matched
1293 metrics between source and target datasets is most impor-
1294 tant to lead to better prediction performance.

1295 6.5 Performance in Different Metric Selections

1296 Table 6 shows prediction results on various metric selection
1297 approaches including with no metric selection (‘None’). We
1298 compare the median AUCs of the HDP results by KSAna-
1299 lyzer with the cutoff of 0.05 to those of WPDP, CPDP-CM,
1300 CPDP-IFS, or UDP and report the percentages of Win
1301 results.
1302 Overall, we could observe metric selection to be helpful
1303 in improving prediction models in terms of AUC. When
1304 applying metric selection, the Win results account for more
1305 than about 63 percent in most cases against CPDP-CM and
1306 UDP. Against CPDP-IFS, the Win results of HDP account
1307 for more than 80 percent after applying the metric selection
1308 approaches. This implies that the metric selection
1309 approaches can remove irrelevant metrics to build a better
1310 prediction model. However, the percentages of Win results
1311 in ‘None’ were lower than those in applying metric selec-
1312 tion. Among metric selection approaches, ‘Gain Ratio’, ‘Chi-

1313Square’ and ‘Significance’ based approaches lead to the best
1314performance in terms of the percentages of the Win results
1315(64.8-83.4 percent) against CPDP-CM, CPDP-IFS, and UDP.

13166.6 Performance in Various Metric Matching
1317Analyzers

1318In Table 7, we compare the prediction performance in other
1319analyzers with the matching score cutoff thresholds, 0.05
1320and 0.90. HDP’s prediction results by PAnalyzer, with a cut-
1321off of 0.90, are comparable to CPDP-CM and CPDP-IFS. This
1322implies that comparing 9 percentiles between source and tar-
1323get metrics can evaluate the similarity of them well with a
1324threshold of 0.90 against CPDP-CM and CPDP-IFS. How-
1325ever, PAnalyzer with the cutoff is too simple to lead to better
1326prediction performance than KSAnalyzer. In KSAnalyzer
1327with a cutoff of 0.05, the AUC (0.711) better than that (0.693)
1328of PAnalyzer with the cutoff of 0.90.
1329HDP by KSAnalyzer with a cutoff of 0.90 could show bet-
1330ter AUCvalue (0.831) compared to that (0.711) with the cutoff
1331of 0.05. However, the target coverage is just 21 percent. This is
1332because some prediction combinations are automatically fil-
1333tered out since poorly matched metrics, whose matching
1334score is not greater than the cutoff, are ignored. In other
1335words, defect prediction for 79 percent of targetswas not con-
1336ducted since the matching scores of matched metrics in pre-
1337diction combinations for the targets are not greater than 0.90
1338so that allmatchedmetrics in the combinationswere ignored.
1339An interesting observation in PAnalyzer and KSAnalyzer
1340is that AUC values of HDP by those analyzers tend to be
1341improved when a cutoff threshold increased. As the cutoff
1342threshold increased as 0.05, 0.10, 0.20; . . . ; and 0.90, we
1343observed prediction results by PAnalyzer and KSAnalyzer
1344gradually are improved from 0.642 to 0.693 and 0.711 to
13450.831 in AUC, respectively. This means these two analyzers

TABLE 6
Prediction Performance (a Median AUC and % of Win) in Different Metric Selections

Approach

Against HDP

WPDP CPDP-CM CPDP-IFS UDP

AUC Win% AUC Win% AUC Win% AUC Win% AUC

Gain Ratio 0.732 45.1% 0.632 68.3% 0.558 82.0% 0.702 64.8% 0.711*&

Chi-Square 0.741 43.0% 0.635 77.5% 0.557 83.3% 0.720& 65.2% 0.717*
Significance 0.734 43.8% 0.630 69.7% 0.557 83.4% 0.693 67.6% 0.713*&

Relief-F 0.740 42.4% 0.642 66.2% 0.540 80.8% 0.720 62.6% 0.706*
None 0.657 46.7% 0.622 51.6% 0.545 64.2% 0.693& 44.0% 0.665*

TABLE 7
Prediction Performance in Other Analyzers with the Matching Score Cutoffs, 0.05 and 0.90

Analyzer Cutoff

Against HDP

Target
Coverage

# of Prediction
CombinationWPDP CPDP-CM CPDP-IFS UDP

AUC Win% AUC Win% AUC Win% AUC Win% AUC

P 0.05 0.741 43.0% 0.655 54.9% 0.520 69.5% 0.693& 69.5% 0.642* 100% 962
P 0.90 0.732 32.9% 0.629 62.9% 0.558 80.0% 0.680 59.3% 0.693* 100% 140
KS 0.05 0.732 45.1% 0.632 68.3% 0.558 82.0% 0.702 64.8% 0.711*& 100% 284
KS 0.90 0.816 55.6% 0.588 77.8% 0.585 100.0% 0.786 88.9% 0.831* 21% 90
SCo 0.05 0.741 16.9% 0.655 41.9% 0.520 55.7% 0.693& 38.7% 0.609* 100% 962
SCo 0.90 0.741 17.7% 0.654 42.4% 0.520 56.4% 0.693& 39.2% 0.614* 100% 958

3. For detailed target prediction results and distributions of matched
metrics by each source dataset, please refer to the online appendix:
https://lifove.github.io/hdp/#pc.
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1346 can filter out negative prediction combinations well. As a
1347 result, the percentages of Win results are also increased.
1348 HDP results by SCoAnalyzer were worse than WPDP,
1349 CPDP-CM, and UDP. In addition, prediction performance
1350 rarely changed regardless of cutoff thresholds; results by
1351 SCoAnalyzer in different cutoffs from 0.05 to 0.90 did not
1352 vary as well. A possible reason is that SCoAnalyzer does
1353 not directly compare the distributions between source and
1354 target metrics. This result implies that the similarity of dis-
1355 tribution between source and target metrics is a very impor-
1356 tant factor for building a better prediction model.

1357 6.7 Performance in Various Machine Learners

1358 To investigate if HDP works with other machine learners,
1359 we built HDP models (KSAnalyzer and the cutoff of 0.05)
1360 with various learners used in defect prediction literature
1361 such as SompleLogistic, Random Forest, BayesNet, SVM,
1362 J48 Decision Tree, and Logistic Model Trees (LMT) [1], [7],
1363 [8], [77], [77], [78], [79]. Table 8 shows median AUCs and
1364 Win results.
1365 Machine learners based on logit function such as Simple-
1366 Logistic, Logistic, and LMT led to the promising results
1367 among various learners (median AUC > 0.70). Logistic
1368 Regression uses the logit function and Simple Logistic
1369 builds a linear logistic regression model based on Logi-
1370 tBoost [95]. LMT adopts Logistic Regression at the leaves of
1371 decision tree [77]. Thus, these learners work well when
1372 there is a linear relationship between a predictor variable (a
1373 metric) and the logit transformation of the outcome variable
1374 (defect-proneness) [95], [96]. In our study, this linear rela-
1375 tionship is related to the defect-proneness tendency of a
1376 metric, that is, a higher complexity causes more defect-
1377 proneness [1], [2], [6]. As the consistent defect-prone ten-
1378 dency of matched metrics is important in HDP, the HDP
1379 models built by the logistic-based learners can lead to the
1380 promising prediction performance.
1381 According to the recent study by Ghotra et al., LMT and
1382 Simple Logistic tend to lead to better prediction perfor-
1383 mance than other kinds of machine learners [77]. HDP
1384 results based on Simple Logistic and LMT also confirm the
1385 results by Ghotra et al. [77]. However, these results do not
1386 generalize HDP works best by logistic-based learners as
1387 Ghotra et al. also pointed out prediction results and the best
1388 machine learner may vary based on each dataset [77].
1389 There are several interesting observations in Table 8. SVM
1390 did not work for HDP and all baselines as their AUC values

1391are 0.500. This result also confirms the study by Ghotra et al.
1392as SVMwas ranked in the lowest group [77]. Except for Sim-
1393pleLogistic and Logistic, UDP outperforms HDP in most
1394learners with statistical significance. CLAMI for UDP is also
1395based on defect-proneness tendency of a metric [66]. If target
1396datasets follow this tendency very well, CLAMI could lead
1397to promising prediction performance as CLAMI is not
1398affected by the distribution differences between source and
1399target datasets [66]. Detailed comparison of UDP andHDP is
1400an interesting future direction as UDP techniques have
1401received much attention recently [66], [76], [97]. We remain
1402this detailed comparative study as future work.

14036.8 Summary

1404In Section 6, we showed HDP results for RQ1. The follow-
1405ings are the key observations of the results in our experi-
1406mental setting:

1407� Overall, HDP led to better or comparable results to
1408the baselines such as CPDP-CM, CPDP-IFS, and UDP
1409when using the Logistic learner with KSAnalyzer (the
1410cutoff of 0.05) andGain ratio attribute selection.
1411� Compared to WPDP (0.732), HDP achieved 0.711 in
1412terms of median AUC. Note that WPDP is an upper
1413bound and 18 of 34 projects show better prediction
1414results with statistical significance in terms of
1415median AUC. However, there are still 52.8 percent
1416of Loss results against WPDP. Based on the analysis
1417of distributions of matched metrics, we observed
1418that the Loss cases are caused by the inconsistent
1419defect-proneness tendency of the matched metrics.
1420Identifying the inconsistent tendency in advance is a
1421challenging problem to be solved.
1422� Applying metric selection approaches could
1423improve HDP performances against the baselines.
1424� KSAnalyzer showed the best HDP performance com-
1425pared to PAnalyzer and SCoAnalyzer. This confirms
1426that KS-test is a good tool to decide whether distribu-
1427tions of two variables are drawn from the same dis-
1428tribution [67], [70].
1429� HDPworked well with Simple Logistic, Logistic, and
1430LMT but not with other machine learners. One possi-
1431ble reason is that Logistic related classifiers capture
1432the linear relationship between metrics and the logit
1433transformation of labels that is related to the defect-
1434proneness tendency of the metrics.

TABLE 8
Prediction Performance (a Median AUC and % of Win) of HDP by KSAnalyzer (Cutoff = 0.05)

Against WPDP, CPDP-CM, and CPDP-IFS by Different Machine Learners

HDP Learners

Against HDP

WPDP CPDP-CM CPDP-IFS UDP

AUC Win AUC Win AUC Win AUC Win AUC

SimpleLogistic 0.763 44.0% 0.680 60.9% 0.691 62.7% 0.734 48.9% 0.718*
RandomForest 0.732 39.4% 0.629 46.5% 0.619 63.0% 0.674& 84.9% 0.640*
BayesNet 0.703 41.5% 0.583 48.2% 0.675* 29.2% 0.666& 35.2% 0.633
SVM 0.500 29.9% 0.500 28.2% 0.500 26.4% 0.635& 11.6% 0.500
J48 0.598 34.2% 0.500 44.7% 0.558 46.8% 0.671& 18.7% 0.568
Logistic 0.732 45.1% 0.632 68.3% 0.558 82.0% 0.702 64.8% 0.711*&

LMT 0.751 42.3% 0.671 58.5% 0.690 56.0% 0.734& 41.9% 0.702
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1435 In the case of homogeneous transfer (where the source
1436 and target datasets have the same variable names), we have
1437 results with Krishna et al. [28]. It has shown that within
1438 “communities” (projects that collect data using the same
1439 variable names) there exists one “bellwether”4 dataset from
1440 which it is possible to learn defect predictors that work well
1441 for all other members of that community. (Aside: this also
1442 means that within each community there are projects that
1443 always produce demonstrably worse defect models.) While
1444 such bellwethers are an interesting way to simplify homoge-
1445 neous transfer learning, our own experiments show that this
1446 “bellwether” idea does not work for heterogeneous transfer
1447 (where source and target can have different terminology).
1448 We conjecture that bellwethers work for homogeneous data
1449 due to regularities in the data that may not be present in the
1450 heterogeneous case.

1451 7 SIZE LIMITS (LOWER BOUNDS) FOR EFFECTIVE

1452 TRANSFER LEARNING

1453 In this section, we investigate the lower bounds of the effec-
1454 tive sizes of source and target datasets for HDP models to
1455 address RQ2.
1456 RQ2: What are the lower bounds of the size of source and tar-
1457 get datasets for effective HDP?
1458 Since HDP compares the distributions of source metrics
1459 to those of target metrics, it is important to seek the empiri-
1460 cal evidence for the effective sizes of source and target data-
1461 sets to match source and target metrics. We first present the
1462 results of the empirical study for RQ2 in this section and
1463 validate the generality of its results in Section 8.
1464 Like prior work [8], [10], [11], [48], [55], the basic HDP
1465 method we proposed above uses all the instances in poten-
1466 tial source and target projects to perform metric to select the
1467 best matched metrics and then build defect prediction learn-
1468 ers. Collecting all that data from source and target projects
1469 need much more work and also for the target project, it
1470 requires waiting for it to finish before transferring its
1471 learned lessons. This begs the question “how early can we
1472 transfer?”. That is, how few historical data and target proj-
1473 ects do we need before transfer can be effective? In this sec-
1474 tion, we conduct an empirical study to answer these
1475 questions related to RQ2.
1476 To investigate the size limits for effective transfer learn-
1477 ing in the setting of CPDP across datasets with heteroge-
1478 neous metric sets, we focus on the HDP approach. There are
1479 other approaches such as CPDP-IFS [56] and CCA+ [57]. In
1480 Section 6, we observed that HDP outperforms CPDP-IFS. In
1481 addition, CCA+ was evaluated in somewhat different con-
1482 text, i.e., cross-company defect prediction and with 14 proj-
1483 ects which are far less than 34 projects used in our
1484 experiments for HDP. In addition, the implementation of
1485 CCA+ is not publicly available yet and more complex than
1486 HDP. For this reason, we conducted our empirical study for
1487 RQ2 based on HDP.

1488 7.1 Using Small Datasets is Feasible

1489 Recall from the above, HDP uses datasets in a two step pro-
1490 cess. To test the impact of having access to less data, we add

1491an instance sampling process before performing metric
1492matching: instead of using all the instances from candidate
1493source and target datasets, those datasets will be randomly
1494sampled (without replacement) to generate smaller datasets
1495of sizeN 2 f50; 100; 150; 200g.
1496The reason we choose those N values as follows. On one
1497hand, by looking at the size of datasets used in the above
1498experiment, we observed that minimum size is ar5 with 36
1499instances and maximum size is pc5 with 17,001 instances.
1500Themedian andmean value of dataset size are 332 and 1,514,
1501respectively. Then 200 is less than both of them, which is rea-
1502sonably small. On the other hand, we use these numbers to
1503show using small datasets is feasible compared to the origi-
1504nal. We are not claiming they are the best (optimal) small
1505numbers. For most datasets considered in this experiment,N
1506with these values is a small data size compared to the original
1507data size. For example, we use N 2 f50; 100; 150; 200g
1508whereas our datasets vary in size from 332 to 17,001 (from
1509median to themaximumnumber of rows).
1510When sampling the original data, if the number of instances
1511in the original dataset is smaller than N , all those instances will
1512be included. For example, N ¼ 200 means we sampled both
1513source and target data with size of 200. If the dataset has
1514less than 200 instances, such as ar3, we use all the instances
1515and no oversampling is applied. With those sampled
1516N ¼ 200 data, we perform metric matching to build a
1517learner and finally predict labels of all original data in the
1518target project. We sample the data without replacement to
1519avoid duplicate data.
1520The results for this HDP-with-limited-data experiment is
1521shown in Fig. 6 (we display median AUC results from 20
1522repeats, using Logistic Regression as the default learner). In
1523that figure:

1524� The black line show the results using all data;
1525� The colourful lines show results of transferring from
1526some small N number of samples (instead of all) in
1527the source and target datasets during metric match-
1528ing and learner building;
1529� The letters show the unique ID of each dataset.
1530The datasets are ordered left to right by the difference to
1531the black line (where we transfer using all the source data):

1532� On the left, the black line is above the red line; i.e., for
1533those datasets, we do better using all data than using
1534some.
1535� On the right, the black line is below the red line; i.e.,
1536for those datasets, we do worseusing all data than
1537using some.
1538Note that the gap between the red and black line shrinks
1539as we use more data and after N ¼ 100, the net gap space is
1540almost zero. When N ¼ 200, in 28=34 datasets, it is hard to
1541distinguish the blue and black curves of Fig. 6. That is, we
1542conclude that using more than a small sample size (like
1543N ¼ 200) would not improve defect prediction.

15448 EXPLAINING RESULTS OF SIZE LIMITS FOR

1545EFFECTIVE TRANSFER LEARNING

1546To assess the generality of the results in Section 7, we need
1547some background knowledge that knows when a few sam-
1548ples will (or will not) be sufficient to build a defect predic-
1549tor. Using some sampling theory, this section:

4. In a flock of sheep, the “bellwether” is the individual that the rest
of the flock will follow.
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1550 � Builds such a mathematical model;
1551 � Maps known aspects of defect data into that model;
1552 � Identifies what need to change before the above
1553 results no longer hold.
1554 To start, we repeat the lessons learned above as well as
1555 what is known about defect datasets. Next, we define a maths
1556 model which will be used in a Monte Carlo simulation to gen-
1557 erate a log of how many samples are required to find some
1558 signal. This log will be summarized via a decision tree learner.

1559 8.1 Set Up

1560 8.1.1 Lessons from the Above Work

1561 The results in Section 7 show that a small number of exam-
1562 ples are sufficient to build a defect predictor, even when the
1563 data is transferred from columns with other names. In the
1564 following we will build a model to compute the probability
1565 that n training examples are sufficient to detect e% defective
1566 instances.
1567 In order to simplify the analysis, we divide n into
1568 n < 50; n < 100; n < 200, and n � 200 four ranges respec-
1569 tively (and note that n � 200 is where the above results do
1570 not hold).

1571 8.1.2 Known Aspects About Defect Datasets

1572 Recent results [55], [66] show that, for defect data, good pre-
1573 dictors can be built via a median chop of numeric project
1574 data; they are divided into b ¼ 2 bins, i.e., defective bin and
1575 non-defective bin. For example, defective instances that
1576 likely have high metric values belong to the defective bin
1577 while non-defective ones that have low metric values
1578 belong to the non-defective bin [66].
1579 Other results [98] show that defect prediction data con-
1580 taining dozens of attributes, many of which are correlated
1581 attributes. Hence, while a dataset may have many dimen-
1582 sions, it only really “needs” a few (and by “need” we mean

1583that adding unnecessary dimensions does not add the accu-
1584racy of defect predictors learned from this data).
1585Feature subset selection algorithms [64] can determine
1586which dimensions are needed, and which can be ignored.
1587When applied to defect data [2], we found that those data-
1588sets may only need d 2 f2; 3g dimensions.
1589Hence, in the following, we will pay particular attention
1590to the “typical” region of b ¼ 2; d � 3.

15918.1.3 A Mathematical Model

1592Before writing down some maths, it is useful to start with
1593some intuitions. Accordingly, consider a chess board con-
1594taining small piles of defects in some cells. Like all chess
1595boards, this one is divided into a grid of b2 cells (in standard
1596chess, b ¼ 8 so the board has 64 cells). Further, some cells of
1597the chess board are blank while other cells are e% covered
1598with that signal.
1599If we throw a small pebble at that chess board, then the
1600odds of hitting a defect is c� pwhere:

1601� c is the probability of picking a particular cell;
1602� p is the probability that, once we arrive at that cell,
1603we will find the signal in that cell.
1604With a few changes, this chess board model can be used
1605to represent the process of machine learning. For example,
1606instead of a board with two dimensions, data mining works
1607on a “chess board” with d dimensions: i.e., one for all the
1608independent variables collected from a project (which are
1609“needed”, as defined as Section 8.1.2).
1610Also, instead of each dimension being divided into eight
1611(like a chess board), it is common in data mining for SE [99]
1612to divide dimensions according to some descritization pol-
1613icy [100]. Discretization converts a numeric variable with
1614infinite range into a smaller number of b bins. Hence, the
1615number of cells in a hyper-dimensional chess board is bd

1616and the probability of selecting any one cell is

Fig. 6. Improvements of using sampled data over all data with sampled size N = {50, 100, 150, 200}. The right side shows using small dataset is bet-
ter than using all data. We label the data in table 1 from a to z, and continue from A to H, the last two datasets ar5 and ar6 as G and H.
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c ¼ 1=ðbdÞ ¼ b�d: (5)
16181618

1619 Once we arrive at any cells, we will be in a region with e
1620 percent errors. What is the probability p that we will find
1621 those e errors, given n samples from the training data?
1622 According to Voas and Miller [101], if we see something at
1623 probability e, then we will miss it at probability 1� e. After
1624 n attempts, the probability of missing it is ð1� eÞn so the
1625 probability of stumbling onto e errors is

pðe; nÞ ¼ 1� ð1� eÞn: (6)
16271627

1628 The premise of data mining is that in the data “chess
1629 board”, some cells contain more of the signal than others.
1630 Hence, the distribution of the e errors are “skewed” by
1631 some factor k. If k ¼ 1, then all the errors are evenly distrib-
1632 uted over all cells. But at all other values of k, some cells
1633 contain more errors than others, computed as follows:

1634 � Rc is a random number 0 � R � 1, selected for each
1635 part of the space c 2 C.
1636 � xc is the proportion of errors in each part of C.
1637 xc ¼ Rk

c2C .
1638 � We normalize xc to be some ratio 0 � xc � 1 as fol-
1639 lows:X ¼ P

c2C xc then xc ¼ xc=X
1640 If e is the ratio of classes within a software project con-
1641 taining errors, then E is the expected value of selecting a
1642 cell and that cell containing errors

E ¼
X

c2C
c� xce; (7)

16441644

1645 where c comes from Equation (5) and e is the ratio of classes
1646 in the training set with defects.
1647 Using these equations, we can determine how many
1648 training examples n are required before pðE;nÞ, from Equa-
1649 tion (6), returns a value more than some reasonable thresh-
1650 old T . To make that determination, we call pðE; nÞ for
1651 increasing values of n until p � T (for this paper, we used
1652 T ¼ 67%).
1653 For completeness, it should be added that the procedure
1654 of the above paragraph is an upper bound on the number of
1655 examples needed to find a signal since it assumes random
1656 sampling of a skewed distribution. In practice, if a data min-
1657 ing algorithm is smart, then it would increase the probability
1658 of finding the target signal, thus decreasing how many sam-
1659 ples are required.

1660 8.1.4 Monte Carlo Simulation

1661 The above maths let us define a Monte Carlo simulation to
1662 assess the external validity of our results. Within 1,000 times
1663 of iterations, we picked k; d; b; e values at random from:

1664 � k 2 f1; 2; 3; 4; 5g;
1665 � d 2 f3; 4; 5; 6; 7g dimensions;
1666 � b 2 f2; 3; 4; 5; 6; 7g bins;
1667 � e 2 f0:1; 0:2; 0:3; 0:4g
1668 (These ranges were set using our experience with data
1669 mining. For example, our prior work shows in defect pre-
1670 diction datasets with 40 or more dimensions, that good pre-
1671 dictors can be built using d � 3 of those dimensions [2].)
1672 Within 1,000 iterations of Monte Carlo simulation, we
1673 increased n until Equation (6) showed p passed our

1674reasonable threshold. Next, we generated examples of what
1675n value was found using k; b; d; e.

16768.1.5 Decision Tree Learning

1677These examples were given to a decision tree learner to
1678determine what n values are selected by different ranges
1679of fk; b; d; eg. Decision tree learners seek an attribute range
1680that, when used to split the data, simplifies the distribu-
1681tion of the dependent variable in each split. The decision
1682tree learner is then called recursively on each split. To test
1683the stability of the learned model, the learning is repeated
1684ten times, each time using 90 percent of the data from
1685training and the rest for testing. The weighted average per-
1686formance values for the learned decision tree were remark-
1687ably good:

1688� False alarm rates = 2 percent;
1689� F-measures (i.e., the harmonic mean of recall and
1690precision) of 95 percent

16918.2 Results

1692The resulting decision tree, shown in Fig. 7, defined regions
1693where building defect predictors would be very easy and
1694much harder. Such trees can be read as nested if-then-else
1695statements. For example, Line 1 is an “if”, lines 2 to 21 are
1696the associated “then” and the tree starting at Line 22 is the

Fig. 7. How many n examples are required to be at least 67 percent likely
to find defects occurring at probability e.
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1697 “else”. For another example, we could summarise lines 1 to
1698 5 as follows:

1699 If there are one dimension and the probability of the
1700 defects is less than 10 percent then (if the number of
1701 bins per dimension is three or less then 50 samples
1702 will suffice; else, up to 100 samplesmay be required.)

1703 In that tree:

1704 � Lines 2 to 6 discuss a very easy case. Here, we only
1705 need one dimension to build defect predictors and,
1706 for such simple datasets, a few examples are enough
1707 for defect prediction.
1708 � Lines 22, 36, 46 show a branch of the decision tree
1709 where we need many dimensions that divide into
1710 many bins. For such datasets, we require a larger
1711 number of samples to learn a predictor (n � 200).
1712 The key part of Fig. 7 is the “typical” region defined in
1713 Section 8.1.2; i.e., b ¼ 2; d � 3:

1714 � Lines 7 to 10 show one set of branches covering this
1715 “typical” region. Note lines 9, 10: we need up to 100
1716 examples when the defect signal is rare (10 percent)
1717 but far fewer when the signal occurs at e > 10
1718 percent.
1719 � Lines 22 to 27 show another set of branches in this
1720 “typical region”. Note lines 26, 27: we need up 50 to
1721 200 examples.

1722 8.3 Summary

1723 Our experiments with transfer learning showed that 50 to
1724 200 examples are needed for adequate transfer of defect
1725 knowledge. If the reader doubts that this number is too
1726 small to be effective, we note that the maths of Section 8
1727 show that this “a small number of examples are enough” is
1728 a feature of the kinds of data currently being explored in the
1729 defect prediction literature.

1730 9 DISCUSSION

1731 9.1 Practical Guidelines for HDP

1732 We proposed the HDP models to enable defect prediction
1733 on software projects by using training datasets from other
1734 projects even with heterogeneous metric sets. When we
1735 have training datasets in the same project or in other proj-
1736 ects with the same metric set, we can simply conduct WPDP
1737 or CPDP using recently proposed CPDP techniques respec-
1738 tively [8], [10], [46], [47], [48], [49]. However, in practice, it
1739 might be that no training datasets for both WPDP and
1740 CPDP exist. In this case, we can apply the HDP approach.
1741 In Section 6 and Table 7, we confirm that many target
1742 predictions in HDP by KSAnalyzer with the cutoff of 0.05
1743 outperform or are comparable to baselines and the HDP
1744 predictions show 100 percent target coverage. Since KSAna-
1745 lyzer can match similar source and target metrics, we guide
1746 the use of KSAnalyzer for HDP. In terms of the matching
1747 score cutoff threshold, there is a trade-off between predic-
1748 tion performance and target coverage. Since a cutoff of 0.05
1749 that is the widely used level of statistical significance [91],
1750 we can conduct HDP using KSAnalyzer with the cutoff of
1751 0.05. However, we observe some Loss results in our empiri-
1752 cal study. To minimize the percentage of Loss results, we

1753can sacrifice the target coverage by increasing the cutoff as
1754Table 7 shows KSAnalyzer with the cutoff of 0.90 led to
175577.8, 100, and 88.9 percent Win results in feasible predic-
1756tions against CPDP-CM, CPDP-IFS and UDP. By controlling
1757a cutoff value, we may increase the target coverage. For
1758example, we can start from a higher cutoff value and
1759decrease the cutoff until HDP is eligible. This greedy
1760approach might be helpful for practitioners who want to
1761increase the target coverage when conducting HDP. We
1762remain validating this idea as a future work.

17639.2 Threats to Validity

1764We evaluated our HDP models in AUC. AUC is known as a
1765good measure for comparing different prediction mod-
1766els [11], [78], [79], [84]. However, validating prediction mod-
1767els in terms of both precision and recall is also required in
1768practice. To fairly compare WPDP and HDP models in pre-
1769cision and recall, we need to identify a proper threshold of
1770prediction probability. Identifying the proper threshold is a
1771challenging issue and remains as future work.
1772For RQ1, we computed matching scores using all source
1773and target instances for each prediction combination. With
1774that matching scores, we tested prediction models on a test
1775set from the two-fold cross validation because of the WPDP
1776models as explained in Section 5.4. To conduct WPDP with
1777all instances of a project dataset as a test set, we need a train-
1778ing dataset from the previous releases of the same project.
1779However, the training dataset is not available for our sub-
1780jects. This may lead to an issue on construct validity since
1781the matching score computations are not based on actual
1782target instances used in the samples of the two-fold cross
1783validation. To address this issue, we additionally conducted
1784experiments with different sample sizes, i.e., 50, 100, 150,
1785and 200 rather using all instances when computing match-
1786ing scores for HDP in Section 7.
1787A recent study by Tantithamthavorn et al. [83] pointed
1788out model validation techniques may lead to different inter-
1789pretation of defect prediction results. Although the n-fold
1790cross validation is one of widely used model validation
1791techniques [8], [80], [81], our experimental results based on
1792the two-fold cross validation may be different from those
1793using other validation techniques. This could be an issue in
1794terms of construct validity as well.
1795Since we used the default options for machine learners in
1796our experiments, the experimental results could be
1797improved further when we use optimized options [102],
1798[103]. Thus, our results may be affected by the other options
1799tuning machine learners. We remain conducting experi-
1800ments with the optimized options as a future work.

180110 CONCLUSION

1802In the past, cross-project defect prediction cannot be con-
1803ducted across projects with heterogeneous metric sets. To
1804address this limitation, we proposed heterogeneous defect
1805prediction based on metric matching using statistical analy-
1806sis [67]. Our experiments showed that the proposed HDP
1807models are feasible and yield promising results. In addition,
1808we investigated the lower bounds of the size of source and
1809target datasets for effective transfer learning in defect pre-
1810diction. Based on our empirical and mathematical studies,
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1811 can show categories of data sets were as few as 50 instances
1812 are enough to build a defect predictor and apply HDP.
1813 HDP is very promising as it permits potentially all het-
1814 erogeneous datasets of software projects to be used for
1815 defect prediction on new projects or projects lacking in
1816 defect data. In addition, it may not be limited to defect pre-
1817 diction. This technique can potentially be applicable to all
1818 prediction and recommendation based approaches for soft-
1819 ware engineering problems. As future work, for the metric
1820 matching, we will apply other techniques, like deep learn-
1821 ing, to explore new features from source and target projects
1822 to improve the performance. Since transfer learning has
1823 shown such great power, we will explore the feasibility of
1824 building various prediction and recommendation models to
1825 solve other software engineering problems.
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